• Title/Summary/Keyword: food polymer

Search Result 310, Processing Time 0.025 seconds

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.42-42
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF

Encapsulation of Anthocyanin from Purple Potato by the Application of Food Polymers

  • Azad, Obyedul Kalam;Cho, Dong Ha;Park, Cheol Ho
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2018.10a
    • /
    • pp.274-274
    • /
    • 2018
  • Anthocyanins has a strong antioxidant capacity but exhibit poor stability in water. Therefore, stability of anthocyanin from purple potato (Solanum tuberosum L.) was encapsulated by the application of food polymers. Solid formulation of purple potato was prepared using whey protein, tapioca and lecithin by capillary rheometer at $80^{\circ}C$. The ratio of the polymer and potato powder was 2:8. Total phenolic compound, total flavonoid, total anthocyanin and antioxidant activity was investigated by the spectrophotometer. Result revealed that total phenolic compound (TP) ($5321{\mu}g/100g$), total flavonoid (TF) ($1352{\mu}g/100g$) total anthocyanin (TA) ($764{\mu}g/100g$) and free radical antioxidant activity (DPPH) (86%) was higher in 0.01 M acetic acid mediated lecithin based formulation compared to control (Potato powder) (TP: $1357{\mu}g/100g$; TF) ($634{\mu}g/100g$, TA) ($264{\mu}g/100g\;DPPH$) (64%). Lecithin is a strong emulsifier having capacity to extract bioactive compound and encapsulate extracted compound by nonpolar tail and negatively charged head. Therefore, it would be concluded that lecithin might be used as an encapsulating agent for the bioactive compound from purple potato.

  • PDF

Engineered Clay Minerals for Future Industries: Food Packaging and Environmental Remediation (미래산업에 적용가능한 점토 화합물: 식품포장 및 환경개선)

  • Kim, Hyoung-Jun;Oh, Jae-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.2
    • /
    • pp.35-45
    • /
    • 2016
  • Clays, which are abundant in nature and eco-friendly, have been utilized throughout human history due to their characteristic physicochemical properties. Recently, a variety of clays such as montmorillonite, kaolinite, sepiolite and layered double hydroxide with or without chemical modification have been extensively studied for potential application in industries. Clays that possess a large specific surface area, high aspect ratio, nanometer sized layer thickness and controllable surface charge could be utilized as polymer fillers after appropriate chemical modifications. These modified clays can improve mechanical and gas barrier properties of polymer materials but also provide sustained antibacterial activity to polymer films. Furthermore, engineered clays can be utilized as scavengers for chemical or biological pollutants in water or soil, because they have desirable adsorption properties and chemical specificity. In this review, we are going to introduce recent researches on engineered clays for potential applications in future industries such as food packaging and environmental remediation.

A Practical Engineering for Advanced Barrier Materials: A Brief Review (차세대 Barrier 물질 개발 동향)

  • An, Hee Seong;Lee, Jong Suk
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.85-98
    • /
    • 2015
  • A global trend of replacing metal or glass containers with polymer-based packaging materials has been prevalent in the food packaging industry due to their ease in processibility, excellent transparency, and good cost efficiency. Barrier polymers tend to show low permeabilities for atmospheric gases such as oxygen, carbon dioxide, and water vapor, which allow them to be utilized in the food and beverage packaging industry. With the current global trend, expansion of polymeric packaging materials to new markets such as oxygen sensitive juices, flavored water, and energy drinks requires improved $CO_2$ and $O_2$ barrier properties. The improvement of the existing polymer-based barrier platform will enable a rapid market impact. In this paper, the current barrier technologies such as (1) antiplasticization-induced barrier materials, (2) synergistic effect of antiplasticization and crystallization, (3) new barrier polymers, (4) nanocomposite materials, and (5) polymer blending are introduced with their characterization techniques for the development of advanced packaging materials.

Development of Sustainable Packaging Materials Using Coffee Silverskin and Spent Coffee Grounds: A Comprehensive Review (커피 은피와 커피찌꺼기를 활용한 지속가능한 포장소재 개발을 위한 연구동향)

  • Jihyeon Hwang;Dowan Kim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • As awareness of environmental issues continues to grow, there is an escalating demand for recycling and repurposing byproducts of agricultural and food production processes and their conversion to high-value products. Coffee is the most widely consumed beverage globally; during coffee beverage processing and consumption, byproducts such as coffee silverskin (CS), spent coffee grounds (SCGs), and oil are generated. Despite containing beneficial materials such as cellulose, hemicellulose, lignin, lipids, and bioactive substances, these byproducts are typically discarded in landfills or incinerated. The utilization of CS, SCGs, and oil in the development of packaging materials holds significant potentials toward the realization of a sustainable society. To this end, considerable research efforts have been dedicated to the development of high-value materials derived from coffee byproducts, including functional fillers, polymer composites, and biodegradable polymers. Notably, CS and SCGs have been employed as functional fillers in polymer composites. Additionally, lipids extracted from SCGs have been used as plasticizers for polymers and cultured with microorganisms to produce biodegradable polymers. This review focuses on the research and development of polymer/CS and polymer/SCG composites as well as cellulose extraction and utilization from CS and SCGs and its applications, oil extraction from SCGs, and cultivation with microorganisms using extracted oil for polyhydroxyalkanoates(PHA) production.

Effect of Sludge Conditioner on Dewaterability of Sludge Produced from the Anaerobic Digestion of Food Waste (음식물 쓰레기의 혐기성 소화 슬러지의 응집 및 탈수 특성에 미치는 영향)

  • Park, Jong-Bu;Choi, Sung-Su;Park, Seung-Kook;Hur, Hyung-Woo;Han, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.3
    • /
    • pp.104-110
    • /
    • 2001
  • In this study, the effect of physico-chemical variables on sludge conditioning was determined to enhance dewaterability of effluent produced from the thermophilic anaerobic digestion of food waste. The gas production rate and methane content during the anaerobic digestion of food waste were $1.1m^3/kg$ VS and 63%, respectively, and the biodegradability of volatile solids was 87.5%. The concentrations of CODcr, TKN and TP of effluent from digestor were 18,500mg/L, 2,800mg/L, and 582mg/L, respectively. At the jar test to screen the flocculant for the dewatering of effluent from digestor, $FeCl_3$ and strong cationic polymer were effective on making flocs in the effluent. The condition of flocculation of effluent were 500mg/L of $FeCl_3$ and 50-100 mg/L of strong cationic polymer, respectively. As the result of measuring of dewaterability potential of effluent to determine the mixing ratio between $FeCl_3$ and polymer by capillary suction time(SCT), optimum condition was 500mg/L of $FeCl_3$ and 80mg/L of strong cationic polymer.

  • PDF

Polyethyleneimine Derivative for Nucleic Acid Model

  • Lee, Chan-Woo;Chae, Hee-Jeong;Kwon, Young-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.205-211
    • /
    • 2005
  • Water-soluble polyethyleneimine (PE) derivatives containing nucleic acid bases and hydrophilic amino acids such as homoserine (Hse) and serine were prepared by the activated ester method as nucleic acid models. From spectroscopic measurements, the polymers were found to interact with DNA accompanied by an induction of conformational change. Hypochromicity in UV spectra indicated that a stable polymer complex was formed between poly (A) with PEI­Hse-Ura by complementary hydrogen bonding with equimolar nucleic base units (adenine:uracil=1:1). The induced conformation of DNA by the interaction with the polymer containing uracil and homoserine (PEI-Hse-Ura) was concluded to be a super triple helical structure. The formation of the polymer complex, DNA: PEI-Hse-Ura, was found to be affected by the presence of metal ions such as $Ca^{2+}\;and\;Cu^{2+}$.

Effect of Polyolic Plasticizers on Rheological and Thermal Properties of Zein Resins

  • Oromiehie, A.R.;Ghanbarzadeh, B.;Musavi, S.M.
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.360-360
    • /
    • 2006
  • Zein protein is one of the best biopolymer for edible film making and polyols are convenient plasticizers for biopolymers. Sorbitol, glycerol and manitol at three levels (0.5, 0.7, 1g/g of zein) were used as plasticizers. Rheological and thermal properties of zein resins were studied for determining their plasticization effectiveness. Sorbitol and glycerol had good plasticizing effects and could decrease viscoelastic modulus of zein resins considerably, but manitol was not as effective as them. Effects of plasticizers on thermal properties of resins were investigated by DSC at -100 to $150^{\circ}C$. No crystallization and melting peaks related to zein resin and plasticizers were observed. Thermograms showed that polyolic plasticizers and zein resin remained a homogeneous material throughout the cooling and heating cycles.

  • PDF

Algae Based Energy Materials (해조류를 이용한 친환경 에너지소재)

  • Han, Seong-Ok
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • Recently, sea algae cultivation as carbon sink and carbon dioxide fixation have been considered. Also, various researches on bioenergy derived from sea algae and the utilization of fibers, saccharide, and lipid of sea algae have been performing. Till now, algae fibers has been used for manufacturing of paper and reinforcing of polymer composites and the extracts of sea algae are used for cosmetics, pharmaceutical materials and food such as agar. Especially, algae fiber has so similar properties to cellulose in terms of crystallinity and functional groups that it can be utilized as reinforcements of biocomposites. Biocomposites as alternatives of glass fiber reinforced polymer composites are environmentally friendly polymer composites reinforced with natural fibers and are actively applying to the automobiles and construction industries. In this paper, characteristics of algae fiber and biocomposites reinforced with algae fiber as environmentally friendly energy materials have been introduced.

  • PDF

Electro-spun Antimicrobial Acrylic Fiber

  • Lee, Jae-Woong;Ren, Xue-Hong;Broughton, R.M.;Liang, Jie;Worley, S.D.;Huang, T.S.
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.44-49
    • /
    • 2007
  • Antimicrobial fibers were prepared by an electro-spinning method. Polystyrene hydantoin(PSH) was employed as an antimicrobial precursor to produce an electro-spun antimicrobial acrylic fiber. Increasing the surface area of hydrophobic antimicrobial-fibers provides enhanced antimicrobial efficacy. The biocidal activity of electro-spun acrylic fibers could be rendered through chlorine bleach treatment, and the antimicrobial effectiveness against gram-Positive and gram-negative bacteria was investigated. In addition, scanning electron microscopy(SEM) demonstrated the feature of the electro-spun fibers.