Electro-spun Antimicrobial Acrylic Fiber

  • Lee, Jae-Woong (Dept. of Polymer and Fiber Engineering, Auburn University) ;
  • Ren, Xue-Hong (Dept. of Polymer and Fiber Engineering, Auburn University) ;
  • Broughton, R.M. (Dept. of Polymer and Fiber Engineering, Auburn University) ;
  • Liang, Jie (Dept. of Chemistry and Biochemistry, Auburn University) ;
  • Worley, S.D. (Dept. of Chemistry and Biochemistry, Auburn University) ;
  • Huang, T.S. (Dept. of Nutrition and Food Science, Auburn University)
  • Published : 2007.04.27

Abstract

Antimicrobial fibers were prepared by an electro-spinning method. Polystyrene hydantoin(PSH) was employed as an antimicrobial precursor to produce an electro-spun antimicrobial acrylic fiber. Increasing the surface area of hydrophobic antimicrobial-fibers provides enhanced antimicrobial efficacy. The biocidal activity of electro-spun acrylic fibers could be rendered through chlorine bleach treatment, and the antimicrobial effectiveness against gram-Positive and gram-negative bacteria was investigated. In addition, scanning electron microscopy(SEM) demonstrated the feature of the electro-spun fibers.

Keywords

References

  1. M. Ma and G. Sun, Antimicrobial Cationic Dyes. Part 3: Simultaneous Dyeing and Antimicrobial Finishing of Acrylic Fabrics, Dyes and Pigments, 66(1), 33-41(2005) https://doi.org/10.1016/j.dyepig.2004.09.001
  2. Y. H. Kim and G. Sun, Durable Antimicrobial Finishing of Nylon Fabrics with Acid Dyes and a Quaternary Ammonium Salt, Textile Research Journal, 71(4), 318-323(2001) https://doi.org/10.1177/004051750107100407
  3. Y. Shin, D. I. Yoo and J. Jang, Molecular Weight Effect on Antimicrobial Activity of Chitosan Treated Cotton Fabrics, J. Appl. Polym. Sci., 80(13), 2495-2501(2001) https://doi.org/10.1002/app.1357
  4. K. F. El-Tahlawy, M. A. El-Bendary, A. G. Elhendawy and S. M. Hudson, The Antimicrobial Activity of Cotton Fabrics Treated with Different Crosslinking Agents and Chitosan, Carbohydrate Polymers, 60(4), 421-430(2005) https://doi.org/10.1016/j.carbpol.2005.02.019
  5. S. S. Block, 'Disinfection, Sterilization and Preservation (3rd ed.) ', Lea & Febiger, Philadelphia, pp.390-400, 1983
  6. J. Scholz, G. Nocke, F. Hollstein and A. Weissbach, Investigations on Fabrics Coated with Precious Metals Using The Magnetron Sputter Technique with Regard to Their Antimicrobial Properties, Surface and Coatings Technology, 192(2-3), 252-256(2005) https://doi.org/10.1016/j.surfcoat.2004.05.036
  7. N. Y. Liang and L. F. Chang, U.S.. Pat. 2006024228(2006)
  8. T. Takahashi, Y. Shoji, O. Inoue, Y. Miyamoto and K. Tokuda, Antibacterial Properties of Rayon Fibers Containing Titanium Oxide Photocatalyst, Biocontrol Science, 9(3), 51-60(2004) https://doi.org/10.4265/bio.9.51
  9. G. Sun and X. Xu, Durable and Regenerable Antibacterial Finishing of Fabrics: Biocidal Properties, Text. Chem. Colorist, 30, 26-30(1998)
  10. D. E. Williams, L. J. Swango, G. R. Wilt and S. D. Worley, Effect of Organic N-halamines on Selected Membrane Functions in Intact Staphylococcus Aureus Cells, Appl. Environ. Microbiol., 54, 1121-1127(1991)
  11. J. J. Kaminski, N. Bodor and T. Higuchi, N-Halo Derivatives Ill: Stabilization of NitrogenChlorine Bond in N-Chloroamino Acid Derivatives, J. Pharm. Sci., 65, 553-557(1976) https://doi.org/10.1002/jps.2600650418
  12. K. Barnes, J. Liang, R. Wu, S. D. Worley, J. Lee, R. M. Broughton and T. S. Huang, Synthesis and antimicrobial applications of 5,5' -ethylene bis [5- methyl-3-(3-triethoxysilyl pro pyl)hydantoin], Biomaterials, 27(27), 4825-4830 (2006) https://doi.org/10.1016/j.biomaterials.2006.05.023
  13. J. Liang, J.W. Wang, K. Barnes, S.D. Worley, U. Cho, J. Lee, R. M. Broughton and T. S. Huang, N-halamine biocidal coatings, J. Ind. Microbial. Biotechnol, 34(2), 157-163(2007) https://doi.org/10.1007/s10295-006-0181-5
  14. J. Lee, R. M. Broughton, J. Liang, S. D. Wroley and T. S. Huang, Antimicrobial Acrylic Fiber, Research Journal of Textile and Apparel, In Print, 2007
  15. R. Gopal, S. Kaur, Z. W. Ma, C. Chan, S. Ramakrishna and T. Matsuura, Electrospun Nanofibrous Filtration Membrane, J. Memb. Sci., 281, 581-586(2006) https://doi.org/10.1016/j.memsci.2006.04.026
  16. M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid and P. I. Lelkes, Electrospinning polyanilinecontained gelatin nanofibers for tissue engineering applications, Biomaterials, 27(13), 2705-2715(2006) https://doi.org/10.1016/j.biomaterials.2005.11.037
  17. M. R. Abidian, D. Kim and D. C. Martin, Conducting-polymer nanotubes for controlled drug release, Adv. Mater., 18(4), 405-409(2006) https://doi.org/10.1002/adma.200501726
  18. S. Lee and S. K. Obendorf, Developing protective textile materials as barriers to liquid penetration using melt-electrospinning, J. Appl. Polym. Sci., 102(4), 3430-3437(2006) https://doi.org/10.1002/app.24258
  19. G. Sun, W. B. Wheatley and S. D. Worley, A New Cyclic N-Halamine Biocidal Polymer, Ind. Eng. Chem. Res., 33, 168-170(1994) https://doi.org/10.1021/ie00025a022
  20. L. Qian and G. Sun, Durable and Regenerable Antimicrobial Textiles: Synthesis and Applications of 3-Methylol-2,2,5,5-tetramethylimidazolidin-4-one (MTMlO), J. Appl. Polym. Sci., 89, 2418-2425(2003) https://doi.org/10.1002/app.12405