DOI QR코드

DOI QR Code

A Practical Engineering for Advanced Barrier Materials: A Brief Review

차세대 Barrier 물질 개발 동향

  • An, Hee Seong (Center for environment, health and welfare research, Korea Institute of Science and Technology) ;
  • Lee, Jong Suk (Center for environment, health and welfare research, Korea Institute of Science and Technology)
  • Received : 2015.04.18
  • Accepted : 2015.04.20
  • Published : 2015.04.30

Abstract

A global trend of replacing metal or glass containers with polymer-based packaging materials has been prevalent in the food packaging industry due to their ease in processibility, excellent transparency, and good cost efficiency. Barrier polymers tend to show low permeabilities for atmospheric gases such as oxygen, carbon dioxide, and water vapor, which allow them to be utilized in the food and beverage packaging industry. With the current global trend, expansion of polymeric packaging materials to new markets such as oxygen sensitive juices, flavored water, and energy drinks requires improved $CO_2$ and $O_2$ barrier properties. The improvement of the existing polymer-based barrier platform will enable a rapid market impact. In this paper, the current barrier technologies such as (1) antiplasticization-induced barrier materials, (2) synergistic effect of antiplasticization and crystallization, (3) new barrier polymers, (4) nanocomposite materials, and (5) polymer blending are introduced with their characterization techniques for the development of advanced packaging materials.

고분자의 용이한 가공성과 우수한 투명성, 그리고 합리적인 비용 효율로 인해 식품 포장 산업에서 금속이나 유리용기들을 고분자 기반의 포장 소재들로 대체하려는 경향이 전 세계적으로 널리 퍼지고 있다. Barrier 고분자들은 산소, 이산화탄소, 수증기 등 대기 가스에 대한 낮은 투과성을 나타내고 있어 식품 포장 산업 이용에 유용하다. 이러한 식품 포장 산업의 전반적인 추세와 함께, 산소에 민감한 주스, 착향 음료, 그리고 에너지 음료 등 새로운 식품 산업의 성장으로 인해 고성능의 barrier 특성, 특히 $O_2$$CO_2$에 대해 낮은 투과성을 지닌 고분자 포장 소재의 개발이 시급한 상황이다. 기존의 고분자에 기반한 barrier의 성능 향상은 새로운 식품 포장 산업에 급격한 변화를 줄 것이다. 본 총설에서는 (1) antiplasticization을 유도한 barrier 소재들, (2) antiplasticization과 crystallization을 사용한 barrier 성능 상승 효과, (3) 새로운 barrier 고분자들, (4) 나노합성 소재, (5) 혼합 고분자 등과 더불어, 차세대 포장 소재들의 특성 분석을 소개하고자 한다.

Keywords

References

  1. M. Aguilarvega and D. R. Paul, "Gas-transport properties of poly(2,2,4,4-tetramethyl cyclobutane carbonate)", J. Polym. Sci. B: Polym Phys., 31, 991 (1993). https://doi.org/10.1002/polb.1993.090310809
  2. M. Aguilar Vega and D. R. Paul, "Gas-transport properties of polycarbonates and polysulfones with aromatic substitutions on the bisphenol connector group", J. Polym. Sci. B: Polym Phys., 31, 1599 (1993).
  3. C. L. Aitken, W. J. Koros, and D. R. Paul, "Effect of structural symmetry on gas-transport properties of polysulfones", Macromolecules, 25, 3424 (1992). https://doi.org/10.1021/ma00039a018
  4. W. J. Koros, "Barrier polymers and structures: overview." ACS Symp. Ser., 423, 1 (1990).
  5. S. L. Anderson, E. A. Grulke, P. T. DeLassus, P. B. Smith, C. W. Kocher, and B. G. Landes, "A model for antiplasticization in polystyrene", Macromolecules, 28, 2944 (1995). https://doi.org/10.1021/ma00112a047
  6. R. Androsch and B. Wunderlich, "The link between rigid amorphous fraction and crystal perfection in cold-crystallized poly(ethylene terephthalate)", Polymer, 46, 12556 (2005). https://doi.org/10.1016/j.polymer.2005.10.099
  7. M. Arnoult, E. Dargent, and J. F. Mano, "Mobile amorphous phase fragility in semi-crystalline polymers: comparison of pet and plla", Polymer, 48, 1012 (2007). https://doi.org/10.1016/j.polymer.2006.12.053
  8. J. Bicerano, "Crystallization of polypropylene and poly(ethylene terephthalate)", J. Macromol. Sci. Rev. Macromol. Chem. Phys., C38, 391 (1998).
  9. G. F. Billovits and C. J. Durning, "Penetrant transport in semicrystalline poly(ethylene-terephthalate)", Polymer, 29, 1468 (1988). https://doi.org/10.1016/0032-3861(88)90313-8
  10. D. J. Brennan, H. C. Silvis, J. E. White, and C. N. Brown, "Amorphous phenoxy thermoplastics with an extraordinary barrier to oxygen", Macromolecules, 28, 6694 (1995). https://doi.org/10.1021/ma00123a045
  11. S. K. Burgess, J. S. Lee, C. R. Mubarak, R. M. Kriegel, and W. J. Koros, "Caffeine antiplasticization of amorphous poly(ethylene terephthalate): Effects on gas transport, thermal, and mechanical properties", Polymer, 65, 34 (2015). https://doi.org/10.1016/j.polymer.2015.03.051
  12. Steven K. Burgess, Johannes E. Leisen, Brian E. Kraftschik, Christopher R. Mubarak, Robert M. Kriegel, and William J. Koros, "Chain mobility, thermal, and mechanical properties of poly(ethylene furanoate) compared to poly(ethylene terephthalate)", Macromolecules, 47, 1383 (2014). https://doi.org/10.1021/ma5000199
  13. W. J. Choi, H. J. Kim, K. H. Yoon, O. H. Kwon, and C. I. Hwang, "Preparation and barrier property of poly(ethylene terephthalate)/clay nanocomposite using clay-supported catalyst", J. Appl. Polym. Sci., 100, 4875 (2006). https://doi.org/10.1002/app.23268
  14. S. De Petris, P. Laurienzo, M. Malinconico, M. Pracella, and M. Zendron, "Study of blends of nylon 6 with evoh and carboxyl-modified evoh and a preliminary approach to films for packaging applications", J. Appl. Polym. Sci., 68, 637 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980425)68:4<637::AID-APP15>3.0.CO;2-O
  15. B. L. Deopura, V. Kumar, and T. B. Sinha, "Melting behavior and crystalline, intermediate and amorphous phase in poly(ethylene-terephthalate) fibers", Polymer, 18, 856 (1977). https://doi.org/10.1016/0032-3861(77)90197-5
  16. P. M. Doty, W. H. Aiken, and H. Mark, "Temperature dependence of water vapor permeability", Ind. Eng. Chem., 38, 788 (1946). https://doi.org/10.1021/ie50440a013
  17. J. L. Duda, Ilyess Hadj Romdhane, and Ronald P. Danner, "Diffusion in Glassy Polymers-Relaxation and Antiplasticization", J. Non-Cryst. Solids., 172, 715 (1994).
  18. A. D. English, "Macromolecular dynamics in solid poly(ethylene-terephthalate)-H-1 and C-13 solid- state nmr", Macromolecules, 17, 2182 (1984). https://doi.org/10.1021/ma00140a052
  19. Alan D. English, "Macromolecular dynamics in solid poly(ethylene terephthalate): Proton and carbon-13 solid-state nmr", Macromolecules, 17, 2182 (1984). https://doi.org/10.1021/ma00140a052
  20. F. A. Ruiz-Trevino and D. R. Paul, "Modification of polysulfone gas separation membranes by additives", J. Appl. Polym. Sci., 66, 1925 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971205)66:10<1925::AID-APP9>3.0.CO;2-P
  21. J. B. Faisant, A. Ait-Kadi, M. Bousmina, and L. Deschenes, "Morphology, thermomechanical and barrier properties of polypropylene ethylene vinyl alcohol blends", Polymer, 39, 533 (1998). https://doi.org/10.1016/S0032-3861(97)00313-3
  22. M. Frounchi and A. Dourbash, "Oxygen barrier properties of poly(ethylene terephthalate) nanocomposite films", Macromol. Mater. Eng., 294, 68 (2009). https://doi.org/10.1002/mame.200800238
  23. A. Gandini, A. J. D. Silvestre, C. P. Neto, A. F. Sousa, and M. Gomes, "The furan counterpart of poly(ethylene terephthalate): An alternative material based on renewable resources", J. Polym. Sci. A: Polym. Chem., 47, 295 (2009). https://doi.org/10.1002/pola.23130
  24. Ramesh M. Gohil, "Designing polyethylene terephthalate-based barrier resins", J. Appl. Polym. Sci., 126, 260 (2012). https://doi.org/10.1002/app.36995
  25. O. Gueguen, S. Ahzi, A. Makradi, and S. Belouettar, "A new three-phase model to estimate the effective elastic properties of semi-crystalline polymers: Application to pet", Mech. Mater., 42, 1 (2010).
  26. Y. S. Hu, A. Hiltner, and E. Baer, "Improving oxygen barrier properties of poly(ethylene terephthalate) by incorporating isophthalate. Ii. effect of crystallization", J. Appl. Polym. Sci., 98, 1629 (2005). https://doi.org/10.1002/app.22214
  27. K. H. Illers and H. Breuer, "Molecular motions in polyethylene terephthalate", J. Colloid. Sci., 18, 1 (1963). https://doi.org/10.1016/0095-8522(63)90100-4
  28. Ticona Product Information, "Vectran liquid crystalline polymer. Exceptional barrier packaging resins for conventional film-converting equipment", (Frankfurt am Main, Germany: Ticona Celanese AG, 2000).
  29. W. J. Jackson and J. R. Caldwell, "Antiplasticization .2. characteristics of antiplasticizers", J. Appl. Polym. Sci., 11, 211 (1967). https://doi.org/10.1002/app.1967.070110205
  30. W. J. Jackson and J. R. Caldwell, "Antiplasticization .3. characteristics and properties of antiplasticizable polymers", J. Appl. Polym. Sci., 11, 227 (1967). https://doi.org/10.1002/app.1967.070110206
  31. J. S. Jang and D. K. Lee, "Oxygen barrier properties of biaxially oriented polypropylene/polyvinyl alcohol blend films", Polymer, 45, 1599 (2004). https://doi.org/10.1016/j.polymer.2003.12.046
  32. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Mechanical-properties of nylon 6-clay hybrid", J. Mater. Res., 8, 1185 (1993). https://doi.org/10.1557/JMR.1993.1185
  33. W. J. Koros and D. R. Paul, "Transient and steady-state permeation in poly(ethylene terephthlate) above and below the glass-transition", J. Polym. Sci. B: Polym. Phys., 16, 2171 (1978). https://doi.org/10.1002/pol.1978.180161207
  34. J. Lange and Y. Wyser, "Recent innovations in barrier technologies for plastic packaging - a review", Packag. Technol. Sci., 16, 149 (2003). https://doi.org/10.1002/pts.621
  35. N. M. Larocca and L. A. Pessan, "Effect of antiplasticisation on the volumetric, gas sorption and transport properties of polyetherimide", J. Membr. Sci., 218, 69 (2003). https://doi.org/10.1016/S0376-7388(03)00139-X
  36. S. W. Lasoski and W. H. Cobbs, "Moisture permeability of polymers .1. role of crystallinity and orientation", J. Polym. Sci., 36, 21 (1959). https://doi.org/10.1002/pol.1959.1203613003
  37. J. S. Lee, Johannes Leisen, Rudra Prosad Choudhury, Robert M. Kriegel, Haskell W. Beckham, and William J. Koros, "Antiplasticization-based enhancement of poly(ethylene terephthalate) barrier properties", Polymer, 53, 213 (2012). https://doi.org/10.1016/j.polymer.2011.11.006
  38. R. R. Light and R. W. Seymour, "Effect of sub-Tg relaxations on the gas transport properties of polyesters", Polym. Eng. Sci., 22, 857 (1982). https://doi.org/10.1002/pen.760221402
  39. J. Lin, S. Shenogin, and S. Nazarenko, "Oxygen solubility and specific volume of rigid amorphous fraction in semicrystalline poly(ethylene terephthalate)", Polymer, 43, 4733 (2002). https://doi.org/10.1016/S0032-3861(02)00278-1
  40. W. L. Lindner, "Characterization of crystalline, intermediate and amorphous phase in poly(ethylene terephthalate) fibers by X-Ray-Diffraction", Polymer, 14, 9 (1973). https://doi.org/10.1016/0032-3861(73)90072-4
  41. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport .1. polysulfone", J. Polym. Sci. B: Polym. Phys., 25, 957 (1987). https://doi.org/10.1002/polb.1987.090250501
  42. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport .2. poly(phenylene oxide)", J. Polym. Sci. B: Polym. Phys., 25, 981 (1987). https://doi.org/10.1002/polb.1987.090250502
  43. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport .3. free-volume interpretation", J. Polym. Sci. B: Polym. Phys., 25, 1005 (1987). https://doi.org/10.1002/polb.1987.090250503
  44. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport. I. polysulfone", J. Polym. Sci. B: Polym. Phys., 25, 957 (1987). https://doi.org/10.1002/polb.1987.090250501
  45. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport. Ii. poly(phenylene sxide)", J. Polym. Sci. B: Polym. Phys., 25, 981 (1987). https://doi.org/10.1002/polb.1987.090250502
  46. Y. Maeda and D. R. Paul, "Effect of antiplasticization on gas sorption and transport. Iii. free volume interpretation", J. Polym. Sci. B: Polym. Phys., 25, 1005 (1987). https://doi.org/10.1002/polb.1987.090250503
  47. L. K. Massey, "Permeability properties of plastics and elastomers-a guide to packaging and barrier materials." ed. by 2nd Ed (William Andrew Publishing/Plastics Design Library 2003).
  48. A. S. Maxwell, L. Monnerie, and I. M. Ward, "Secondary relaxation processes in polyethylene terephthalate-additive blends: 2. Dynamic mechanical and dielectric investigations", Polymer, 39, 6851 (1998). https://doi.org/10.1016/S0032-3861(98)00138-4
  49. A. S. Maxwell, I. M. Ward, F. Laupretre, and L. Monnerie, "Secondary relaxation processes in polyethylene terephthalate-additive blends: 1. N.M.R. investigation", Polymer, 39, 6835 (1998). https://doi.org/10.1016/S0032-3861(98)00137-2
  50. A. S. Maxwell, L. Monnerie, and I. M. Ward, "Secondary relaxation processes in polyethylene terephthalate-additve blends: 2. Dynamic mechanical and dielectric investigations", Polymer, 39, 6851 (1998). https://doi.org/10.1016/S0032-3861(98)00138-4
  51. C. C. McDowell, B. D. Freeman, and G. W. McNeely, "Acetone sorption and uptake kinetic in poly(ethylene terephthalate)", Polymer, 40, 3487 (1999). https://doi.org/10.1016/S0032-3861(98)00403-0
  52. A. S. Michaels, J. A. Barrie, and W. R. Vieth, "Diffusion of gases in polyethylene terephthalate", J. Appl. Phys., 34, 13 (1963). https://doi.org/10.1063/1.1729054
  53. A. S. Michaels, W. R. Vieth, and J. A. Barrie, "Solution of gases in polyethylene terephthalate", J. Appl. Phys., 34, 1 (1963). https://doi.org/10.1063/1.1729066
  54. A. S. Michaels and H. J. Bixler, "Solubility of gases in polyethylene", J. Polym. Sci., 50, 393 (1961). https://doi.org/10.1002/pol.1961.1205015411
  55. A. S. Michaels and R. B. Parker, "The determination of solubility constants for gases in polymers", J. Phys. Chem., 62, 1604 (1959).
  56. A. S. Michaels, W. R. Vieth, and J. A. Barrie, "Solution of gases in poly(ethylene terephthalate)", J. Appl. Phys., 34, 1 (1963). https://doi.org/10.1063/1.1729066
  57. S. D. F. Mihindukulasuriya and L. T. Lim, "Nanotechnology development in food packaging: A review", Trends. Food Sci. Tech., 40, 149 (2014). https://doi.org/10.1016/j.tifs.2014.09.009
  58. K. L. Ngai, R. W. Rendell, A. F. Yee, and D. J. Plazek, "Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates", Macromolecules, 24, 61 (1991). https://doi.org/10.1021/ma00001a010
  59. Y. Nir, M. Narkis, and A. Siegmann, "Permeation through strongly interacting polymer blends: Evoh/copolyamide-6/6.9", Polym. Netw. Blends., 7, 139 (1997).
  60. B. G. Olson, J. Lin, S. Nazarenko, and A. M. Jamieson, "Positron annihilation lifetime spectroscopy of poly(ethylene terephthalate): Contributions from rigid and mobile amorphous fractions", Macromolecules, 36, 7618 (2003). https://doi.org/10.1021/ma034813u
  61. J. Y. Park and D. R. Paul, "Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method", J. Membr. Sci., 125, 23 (1997). https://doi.org/10.1016/S0376-7388(96)00061-0
  62. Prevorse. Dc, G. A. Tirpak, P. J. Harget, and Reimschu.Ac, "Effects of thermal contraction on structure and properties of pet fibers", J. Macromol. Sci. Phys. B, 9, 733 (1974). https://doi.org/10.1080/00222347408204559
  63. M. C. Righetti and M. L. Di Lorenzo, "Vitrification and devitrification of the rigid amorphous fraction in poly(ethylene terephthalate)", E-Polymer (2009).
  64. M. C. Righetti, E. Tombari, M. Angiuli, and M. L. Di Lorenzo, "Enthalpy-based determination of crystalline, mobile amorphous and rigid amorphous fractions in semicrystalline polymers-poly(ethylene terephthalate)", Thermochim., 462, 15 (2007). https://doi.org/10.1016/j.tca.2007.06.003
  65. L. M. Robeson and J. A. Faucher, "Secondary loss transitions in antiplasticized polymers", J. Polym. Sci. B: Polym. Lett., 7, 35 (1969). https://doi.org/10.1002/pol.1969.110070108
  66. L. M. Robeson and J. A. Faucher, "Secondary loss transitions in antiplasticized polymers", J. Polym. Sci. B: Polym. Lett., 7, 35 (1969). https://doi.org/10.1002/pol.1969.110070108
  67. F. A. Ruiz-Trevino and D. R. Paul, "Gas permselectivity and volumetric properties in polysulfone membranes modified by additives.", Abstr. Pap. ACS., 216, U824-U24 (1998).
  68. F. A. Ruiz Trevino and D. R. Paul, "Gas permselectivity properties of high free volume polymers modified by a low molecular weight additive", J. Appl. Polym. Sci., 68, 403 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980418)68:3<403::AID-APP8>3.0.CO;2-N
  69. F. A. Ruiz Trevino and D. R. Paul, "A quantitative model for the specific volume of polymer-diluent mixtures in the glassy state", J. Polym. Sci. B: Polym. Phys., 36, 1037 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980430)36:6<1037::AID-POLB12>3.0.CO;2-7
  70. D. J. Sekelik, E. V. Stepanov, S. Nazarenko, D. Schiraldi, A. Hiltner, and E. Baer, "Oxygen barrier properties of crystallized and talc-filled poly(ethylene terephthalate)", J. Polym. Sci. B: Polym. Phys., 37, 847 (1999). https://doi.org/10.1002/(SICI)1099-0488(19990415)37:8<847::AID-POLB10>3.0.CO;2-3
  71. H. C. Silvis, "Recent advances in polymers for barrier applications", Trend. Polym. Sci., 5, 75 (1997).
  72. A. T. Slark, "The effect of intermolecular forces on the glass transition of solute-polymer blends", Polymer, 38, 2407 (1997). https://doi.org/10.1016/S0032-3861(96)00782-3
  73. V. Stannett, M. Haider, W. J. Koros, and H. B. Hopfenberg, "Sorption and transport of water-vapor in glassy poly(acrylonitrile)", Polym. Eng. Sci., 20, 300 (1980). https://doi.org/10.1002/pen.760200414
  74. Howard W. Starkweather, "Aspects of simple, non-cooperative relaxations", Polymer, 32, 2443 (1991). https://doi.org/10.1016/0032-3861(91)90087-Y
  75. H. W. Starkweather Jr, "Noncooperative relaxations", Macromolecules, 21, 1798 (1988). https://doi.org/10.1021/ma00184a043
  76. H. W. Starkweather Jr, "Simple and complex relaxations", Macromolecules, 14, 1277 (1981). https://doi.org/10.1021/ma50006a025
  77. S. A. Stern, "The "Barrer" permeability unit", J. Polym. Sci. A-2., 6, 1933 (1968). https://doi.org/10.1002/pol.1968.160061108
  78. H. Suzuki, J. Grebowicz, and B. Wunderlich, "Glass-transition of poly(xxymethylene)", Brit. Polym. J., 17, 1 (1985).
  79. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, "Synthesis of nylon 6-clay hybrid", J. Mater. Res., 8, 1179 (1993). https://doi.org/10.1557/JMR.1993.1179
  80. J. S. Vrentas, J. L. Duda, and H. C. Ling, "Antiplasticization and volumetric behavior in glassy-polymers", Macromolecules, 21, 1470 (1988). https://doi.org/10.1021/ma00183a042
  81. J. S. Vrentas, J. L. Duda, and H.-C. Ling, "Antiplasticization and volumetric behaviour in glassy polymers", Macromolecules, 21, 1470 (1988). https://doi.org/10.1021/ma00183a042
  82. W. J. Jackson and J. R. Caldwell, "Antiplasticizers for bisphenol polycarbonates", Adv. Chem. Ser., 48, 185 (1965). https://doi.org/10.1021/ba-1965-0048.ch017
  83. W. R. Vieth, H. H. Alcalay, and A. J. Farabetti, "Solution of gases in oriented poly(ethylene terephthalate)", J. Appl. Polym. Sci., 8, 2125 (1964). https://doi.org/10.1002/app.1964.070080513
  84. L. Xie, X. Y. Lv, Z. J. Han, J. H. Ci, C. Q. Fang, and P. G. Ren, "Preparation and performance of high-barrier low density polyethylene/organic montmorillonite nanocomposite", Polym.-Plast. Technol., 51, 1251 (2012). https://doi.org/10.1080/03602559.2012.699131
  85. H. Yasuda and V. Stannett, "Permeation, solution, and diffusion of water in some high polymers", J. Polym. Sci., 57, 907 (1962). https://doi.org/10.1002/pol.1962.1205716571