• Title/Summary/Keyword: food bank

Search Result 167, Processing Time 0.026 seconds

Cloning of the Xylose Reductase Gene of Candida milleri

  • Sim, Hyoun-Soo;Park, Eun-Hee;Kwon, Se-Young;Choi, Sang-Ki;Lee, Su-Han;Kim, Myoung-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.984-992
    • /
    • 2013
  • The entire nucleotide sequence of the xylose reductase (XR) gene in Candida milleri CBS8195 sourdough yeast was determined by degenerate polymerase chain reaction (PCR) and genome walking. The sequence analysis revealed an open-reading frame of 981 bp that encoded 326 amino acids with a predicted molecular mass of 36.7 kDa. The deduced amino acid sequence of XR of C. milleri was 64.7% homologous to that of Kluyveromyces lactis. The cloned XR gene was expressed in Saccharomyces cerevisiae, and the resulting recombinant S. cerevisiae strain produced xylitol from xylose, indicating that the C. milleri XR introduced into S. cerevisiae is functional. An enzymatic activity assay and semiquantitative reverse transcription-PCR revealed that the expression of CmXR was induced by xylose. The GenBank Accession No. for CmXR is KC599203.

Potential Effect of Monascus-fermented Soybean Extracts on Alkaline Phosphatase Activity of Human Osteoblast-like Cells

  • Pyo, Young-Hee;Kwon, Mi-Ja;Kim, In-Ho
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.434-437
    • /
    • 2008
  • The aim of this study was to investigate whether Monascus-fermented soybean extracts (MFSE) containing natural estrogen-like compounds such as isoflavones and mevinolins has potential effects on human osteoblast-like SaOS2 cells using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and alkaline phophatase (ALP) assaies. MFSE exerted biphasic dose-dependent effect; stimulating osteoblastic activity at low concentrations and inhibiting SaOS2 cells viability at high concentrations. At $10^{-8}-10^{-4}\;mg/mL$, MFSE is not only non-cytotoxic but also induced comparatively high ALP activity on SaOS2 cells. ALP activity (%) significantly increased (220.1%, p<0.05) when SaOS2 cells were treated with MFSE at a concentration of $10^{-5}\;mg/mL$, whereas slowly increased (185.6%, p<0.05) in unfermented soybean extracts (UFSE) at $10^{-3}\;mg/mL$. The potentially greater ALP activity of MFSE compared to the UFSE might partially be caused by its mevinolin, which was derived from the soybean during Monascus-fermentation. Our findings indicate that supplementation of MFSE may accelerate the speed of intracellular ALP synthesis by the bone cells when provided at optimal dosages.

Isolation, Characterization, and Application of Chitosan-Degrading Fungus from Soil

  • Wei, Xinlin;Chen, Wei;Xiao, Ming;Xiao, Jianbo;Wang, Yuanfeng
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1114-1120
    • /
    • 2010
  • A chitosan-degrading fungus, BSF114, was isolated from soil. The culture preparation showed strong chitosanolytic enzyme activity at an optimum pH of 4.0 and optimum temperature of $60^{\circ}C$ after 36-40 h fermentation. The rapid decrease in the viscosity of the chitosan solution early in the reaction suggested an endo-type cleavage of the polymeric chitosan chains. To identify the isolated fungus, molecular biological and morphological methods were used. The fungal internal transcribed spacer (ITS) region 1 was amplified, sequenced, and then compared with related sequences in the GenBank database using BLAST. The phylogenetic relationships were then analyzed, and the results showed that the fungus belongs to Aspergillus fumigatus. Morphological observations were also used to confirm the above conclusion. The chitooligosaccharides (COS) obtained through hydrolyzing the colloidal chitosan showed that A. fumigatus BSF114 is suitable for degrading chitosan and producing chitooligosaccharides on a large scale. High concentrations of the COS (1,000 and 500 ${\mu}g/ml$) significantly proliferated mice marrow cells.

Distribution of Microorganisms in Cheongyang Red Pepper Sausage and Effect of Central Temperature on Quality Characteristics of Sausage

  • Choi, Yun-Sang;Ku, Su-Kyung;Kim, Tae-Kyung;Park, Jong-Dae;Kim, Young-Chan;Kim, Hee-Ju;Kim, Young-Boong
    • Food Science of Animal Resources
    • /
    • v.38 no.4
    • /
    • pp.749-758
    • /
    • 2018
  • The objective of this study was to provide preliminary data for food industry by investigating the distribution of microorganisms in raw materials and sausage examining the effect of heating temperature on sausage quality. Total microbes in sausage ranged 2.21-3.11 Log CFU/g. Bacillus pumilus, B. licheniformis, Staphylococcus saprophyticus, and Enterococcus faecalis were detected on sausage. Total microbes in raw materials was 1.59-7.16 Log CFU/g. Different types of microorganisms were found depending on raw materials, with B. pumilus and B. subtilis were being detected in both raw materials and sausage. Total microbes in sausage after heating was in the range of 1.10-2.22 Log CFU/g, showing the trend of decrease in total microbe with increasing heating temperature, although the decrease was not significant. With increasing heating temperature, pH and hardness were also increased. The yield of sausage manufactured at $85^{\circ}C$ was 95.42% while that manufactured at $65^{\circ}C$ was 96.67%. Therefore, decreasing heating temperature during sausage production might increase yield and save energy without microbiological effect.

Identification of Pork Adulteration in Processed Meat Products Using the Developed Mitochondrial DNA-Based Primers

  • Ha, Jimyeong;Kim, Sejeong;Lee, Jeeyeon;Lee, Soomin;Lee, Heeyoung;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.37 no.3
    • /
    • pp.464-468
    • /
    • 2017
  • The identification of pork in commercially processed meats is one of the most crucial issues in the food industry because of religious food ethics, medical purposes, and intentional adulteration to decrease production cost. This study therefore aimed to develop a method for the detection of pork adulteration in meat products using primers specific for pig mitochondrial DNA. Mitochondrial DNA sequences for pig, cattle, chicken, and sheep were obtained from GenBank and aligned. The 294-bp mitochondrial DNA D-loop region was selected as the pig target DNA sequence and appropriate primers were designed using the MUSCLE program. To evaluate primer sensitivity, pork-beef-chicken mixtures were prepared as follows: i) 0% pork-50% beef-50% chicken, ii) 1% pork-49.5% beef-49.5% chicken, iii) 2% pork-49% beef-49% chicken, iv) 5% pork-47.5% beef-47.5% chicken, v) 10% pork-45% beef-45% chicken, and vi) 100% pork-0% beef-0% chicken. In addition, a total of 35 commercially packaged products, including patties, nuggets, meatballs, and sausages containing processed chicken, beef, or a mixture of various meats, were purchased from commercial markets. The primers developed in our study were able to detect as little as 1% pork in the heat treated pork-beef-chicken mixtures. Of the 35 processed products, three samples were pork positive despite being labeled as beef or chicken only or as a beef-chicken mix. These results indicate that the developed primers could be used to detect pork adulteration in various processed meat products for application in safeguarding religious food ethics, detecting allergens, and preventing food adulteration.

Screening and Identification of Soy Curd-Producing Lactic Acid Bacteria (두유 커드를 생산하는 김치 유래 젖산균의 동정)

  • Kim, Ro-Ui;Ahn, Soon-Cheol;Yu, Sun-Nyoung;Kim, Kwang-Youn;Seong, Jong-Hwan;Lee, Young-Guen;Kim, Han-Soo;Kim, Dong-Seob
    • Journal of Life Science
    • /
    • v.21 no.2
    • /
    • pp.235-241
    • /
    • 2011
  • The purpose of this study was to isolate soy curd forming bacterial strains. Soy curd forming bacteria were isolated from Kimchi, a traditional Korean vegetable food that is fermented using lactic acid bacteria. Among 196 bacterial strains, ten isolates (strain No. 2-2-2, 2-15-2, 2-18-1, 2-19-2, 3-4-1, 3-4-2, 3-8-1, 3-8-3, 3-17-1, 4-39-5) formed firm soy curd. The isolated bacterial strains were identified by molecular biological and biochemical analyses. The genomic DNAs extracted from the isolated bacterial strains were used as a template for PCR amplification of 16S rDNA region. By comparing the results of the 16s rDNA sequences with GenBank data, the isolated strains were identified as Leuconostoc mesenteroides group and Lactobacillus sakei group. The phylogenetic position of soy curd forming strains and their related taxa were investigated using neighbor-joining method. L. mesenteroides group was further identified as L. mesenteroides subsp. dextranicum based on biochemical properties. L. sakei group was named Lactobacillus sp., because it showed a variety of biochemical properties.

Genetic Identification of Spirometra decipiens Plerocercoids in Terrestrial Snakes from Korea and China

  • Jeon, Hyeong-Kyu;Park, Hansol;Lee, Dongmin;Choe, Seongjun;Kim, Kyu-Heon;Sohn, Woon-Mok;Eom, Keeseon S.
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.181-185
    • /
    • 2016
  • Human sparganosis is a zoonotic disease caused by infection with larval forms (procercoid/plerocercoid) of Spirometra spp. The purpose of this study was to identify Spirometra spp. of infected snakes using a multiplex PCR assay and phylogenetic analysis of mitochondrial DNA sequence data from the spargana of terrestrial snakes obtained from Korea and China. A total of 283 snakes were obtained that included 4 species of Colubridae comprising Rhabdophis tigrinus tigrinus (n=150), Dinodon rufozonatum rufozonatum (n=64), Elaphe davidi (n=2), and Elaphe schrenkii (n=7), and 1 species of Viperidae, Agkistrodon saxatilis (n=60). The snakes were collected from the provinces of Chungbuk, Chungnam, and Gyeongbuk in Korea (n=161), and from China (n=122). The overall infection rate with spargana was 83% (235/283). The highest was recorded for D. rufozonatum rufozonatum (100%), followed by A. saxatilis (85%) and R. tigrinus tigrinus (80%), with a negative result for E. davidi (0%) and E. schrenkii (0%). The sequence identities between the spargana from snakes (n=50) and Spirometra erinaceieuropaei (KJ599680) or S. decipiens (KJ599679) control specimens were 90.8% and 99.2%, respectively. Pairwise genetic distances between spargana (n=50) and S. decipiens ranged from 0.0080 to 0.0107, while those between spargana and S. erinaceieuropaei ranged from 0.1070 to 0.1096. In this study, all of the 904 spargana analyzed were identified as S. decipiens either by a multiplex PCR assay (n=854) or mitochondrial cox1 sequence analysis (n=50).

Design of Integrated Reduction Platform for Food Contaminants Derived from the Environment through Interagency Collaboration in Korea (환경유래 식품오염물질의 범부처 통합 저감화 플랫폼 설계)

  • Ko, Ahra;Heo, Ji-Young;Kang, Young-Woon;Kang, Kil Jin;Chung, Myung-Sub;Lee, Hunjoo
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.307-313
    • /
    • 2017
  • Objectives: Chemicals derived from various environment media contaminates food across the food supply chain. In Korea, levels of contaminants in food have been sporadically measured by monitoring programs of different government agencies. There is difficulty with data compilation and integrated analysis across media. Therefore, the aim of this study was to propose an overall integrated database and analytical platform design for the 'ECO-FOOD NET (Environmental COntaminant reduction platform for FOOD through an interagency collaboration NETwork)', a tool to support the reduction of environmental contaminants in food. Methods: We developed a new data structure and standardized protocols for the compilation of integrated data. In addition, we conducted subject-oriented logical and physical relational database modeling and created the architecture design of the platform. Results: We established a standardized code system related to exposure media and route, analysis method and food matrix. In addition, we designed the seven software modules of 'About the System', 'Introduction to Interagency Work', 'Media-Chemicals Profiles', 'Method Bank', 'Monitoring Data Base', 'Integrated Media Analysis', and 'Risk-Benefit Analysis'. Conclusions: This study will contribute to decision-making as a tool for executing risk management, such as sustainable reduction policies of contaminants in food.

Molecular Characterization of Some Antilisterial Bacteriocin Genes from Enterococcus faecium and Pediococcus pentosaceus

  • El-Arabi, Nagwa I.;Salim, Rasha G.;Abosereh, Nivien A.;Abdelhadi, Abdelhadi A.
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.3
    • /
    • pp.288-299
    • /
    • 2018
  • Food bio preservation is of major interest in the food industry. Many types of antimicrobial compounds can be produced by lactic acid bacteria (LAB), including bacteriocins. Bacteriocins increase the shelf-life of food by decreasing some food-borne diseases. In this study, a multi-coding sequence of bacteriocin genes was used for primer design to produce bacteriocin genes in Enterococcus faecium AH2 strain and Pediococcus pentosaceus AH1. Multi-coding sequences were aligned to detect conserved sequences in the bacteriocin gene. Eight genes encoding proteins involved in bacteriocin production were isolated and sequenced, including six from E. faecium AH2 (entA, entI, entF, entR, orfA2, orfA3) and two from P. pentoceseus AH1 (papA, pedB), and all gene sequences were deposited in the Gen Bank database under accession numbers LC064146-LC064151, LC101300, and LC101789, respectively. P. pentosaceus AH1 and E. faecium AH2 strains displayed bacteriocin activities of $2610AU\;mL^{-1}$ and $690AU\;mL^{-1}$ and inhibition zones of 26 mm and 19 mm, respectively. Overexpression of entA in E. faecium AH2 increased the bacteriocin and antimicrobial activities.

Development of the High Voltage Converter for the Pulsed Light Sterilization (광펄스 살균을 위한 다채널 고전압 컨버터의 개발)

  • Lee, Young-Woo;Kim, Hyung-Won;Choi, Woo-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.6
    • /
    • pp.29-37
    • /
    • 2012
  • As the demand for the fresh non-thermal food is increased, it is required to develop the fast and perfect sterilization method. The conventional sterilization method using ultraviolet lamp has some disadvantages such as imperfect sterilization and longer process time. In this research, IPL(Intense Pulsed Light) sterilization system is introduced to overcome the drawbacks of the conventional system, and suitable power supply architecture for the system is discussed. Since the IPL sterilization system uses Zenon lamps which requires the 600~2,100[V] for the lightning and 16~30[kV] for the trigger, the converter for the system should be able to generate the high voltage and to discharge the large amount of energy instantaneously. In this research a new power system architecture which has a modified forward converter topology with two switches for generating high voltage and a capacitor bank to control the energy for the lightning by switching is introduced.