• Title/Summary/Keyword: foil

Search Result 1,007, Processing Time 0.025 seconds

Performance Predictions of Gas Foil Journal Bearing with Shim Foils (심포일을 갖는 가스 포일 저널 베어링의 성능 예측)

  • Hwang, Sung Ho;Moon, Chang Gook;Lee, Jong Sung;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.107-114
    • /
    • 2018
  • This paper presents a computational model of a gas foil journal bearing with shim foils between the top foil and bumps, and predicts its static and dynamic performance. The analysis takes the previously developed simple elastic foundation model for the top foil-bump structure and advances it by adding foil models for the "shim foil" and "outer top foil." The outer top foil is installed between the (inner) top foil and bumps, and the shim foil is installed between the inner top foil and outer top foil. Both the inner and outer top foils have an arc length of $360^{\circ}$, but the arc length of the shim foil is shorter, which causes a ramp near its leading edge in the bearing clearance profile. The Reynolds equation for isothermal and isoviscous ideal gas solves the hydrodynamic pressure that develops within the bearing clearance with preloads due to the ramp. The centerline pressure and film thickness predictions show that the shim foil mitigates the peak pressure occurring at the loading direction, and broadens the positive pressure as well as minimum film thickness zones except for the shortest shim foil arc length of $180^{\circ}$. In general, the shim foil decreases the journal eccentricity, and increases the power loss, direct stiffness, and damping coefficients. As the shim foil arc length increases, the journal eccentricity decreases while the attitude angle, minimum film thickness, and direct stiffness/damping coefficients in the horizontal direction increase.

The Static and Dynamic Performance Analyses of Air Foil Journal Bearing for Various Bump Foil Stiffness (범프포일 강성변화에 대한 포일저널 베어링의 정적, 동적 성능해석)

  • 김경웅;이동현;김영철
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.245-251
    • /
    • 2004
  • This paper presents the effects of the bump foil stiffness on the static and dynamic performance of the foil journal bearings. Reynolds equation is used for the static and dynamic performance analyses. To consider the deflection of top foil the top foil is modeled as a elastic beam and the bump foil is modeled as a spring. So in the static performance analysis the load capacity is compared to the various bump foil stiffness and in the dynamic performance analysis the trajectory of journal center is compared to the various bump foil stiffness.

Ball Milling of Aluminum Foil Scrap (알루미늄 호일 스크랩의 볼밀링)

  • Hong, Seong-Hyeon;Kim, Byeong-Gi
    • 연구논문집
    • /
    • s.29
    • /
    • pp.131-139
    • /
    • 1999
  • The effect of ball milling conditions in the milling of aluminium foil scraps was studied. Initial foil thickness, ball size. content of oleic acid. weight ratio of mineral spirits/foil. charged amount of foil were varied in wet ball milling process. It is impossible to make flake powders by milling of foil scraps with thickness $120 \mum$. As foil thickness decreases from $60\mum$ to $6.5\mum$, Mean size of powder milled for 30 h decreases from 107 µm to 17 µm. Bigger ball is slightly beneficial for milling of foils to the flake powders due to the larger impact energy produced by them. It is impossible to mill the foil without oleic acid to fabricate the flake powder. As content of oleic acid increases from 1.5 % to 5 %, mean size of flake powder milled for 30 h is drastically decreased. For the mineral spirits content below 50 %, foil scrap was not milled because sliding motion of balls by lubricant effect between balls and wall of container. As weight ratio of mineral spirits and foil increase over 100 %, foils were milled powders with mean powder size 15 - 20 때 irrespective of mineral spirits content due to reduced lubricant effect. As charged amount of foil decreases, mean powder size decreases due to increased collision frequency between ball and foil.

  • PDF

The Static Performance Analyses of Air Foil Journal Bearings Considering Three-Dimensional Structure of Bump Foil (범프포일의 3차원 형상을 고려한 공기 포일저널베어링의 정특성 해석)

  • Lee, Dong-Hyun;Kim, Young-Chul;Kim, Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.21 no.6
    • /
    • pp.256-262
    • /
    • 2005
  • The calculation of bump foil deflection is very important to predict the performance of foil bearings more accurately, because the foil bearings consist of top foil and its elastic foundation usually called bump foil. For the purpose of this, a finite element model considering 3-dimensional structure of the bump foil is developed to calculate the deflection of inter-connected bump. The results obtained from the suggested model are compared and analyzed with those from the previous proposed deflection models. In addition, load capacity of the foil bearings is analyzed by using this model.

Analysis of Air Foil Bearing using Influence Coefficients of a Bump Foil (포일변형 영향계수를 이용한 공기포일베어링 해석)

  • Kim Young-Cheol;Lee Dong-Hyun;Kim Kyung-Woong
    • Tribology and Lubricants
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2006
  • This paper presents the influence coefficient method to predict the deflection of bump foil precisely in the sub-structure of AFB(air foil bearing). Heshmat has introduced the simple compliance model to calculate the deflection of bump foil. But this approach can not consider the deflection of bump foil at the edge of AFB, so elasto-hydrodynamic model is insufficient to analyze in case that the eccentricity ratio is greater than 1. Peng has used the average pressure and film thickness, but this approach is not also a realistic model. Influence coefficients of a bump is calculated by finite element method, and introduced in bump deflection equations of the performance analysis of air foil bearing. The effects of the influence coefficient on the bearing performance is discussed in detail for appropriate foil design.

Elasto-Hydrodynamic Lubrication Characteristics of Bump Foil Bearings (범프포일베어링의 탄성유체윤활 특성)

  • Kim, Young-Cheol;Lee, Dong-Hyun;Kim, Kyung-Woong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.98-103
    • /
    • 2004
  • This paper presents modeling and simulation of the bump foil bearings with consideration of the elastic behavior of the foil and gas compressibility. Heshmat had originally introduced the simple compliance model to estimate the EHL(elasto-hydrodynamic lubrication) performance. But this approach can not consider the deflection of top foil at the edge of bearing, so model is insufficient to analyze in case that the eccentricity ratio is greater than I. So the top foil is considered as a simple beam model supported by linear spring elements, and the bump foil deflection can be simple compliance model. The EHL calculations are performed for convention rigid type, classical foil type, variable pitch type and double bump type toil bearings. This paper presents that 2nd or 3rd generation bearings have excellent performance in every speeds.

  • PDF

A Study on Film Sensitive Effect Influenced by ${\gamma}-ray$(Ir-192) Depending on Thickness of Lead Foil ($\gamma$선(線)(Ir-192)이 연박(鉛箔)두께의 증감(增減)에 따른 필름감도(感度) 효과(效果))

  • Joo, Gwang-Tae
    • Journal of radiological science and technology
    • /
    • v.2 no.1
    • /
    • pp.95-99
    • /
    • 1979
  • When the ${\gamma}-ray$ of average energy 375KeV emitted by Ir-192 is exposed to each film through lead foil with various thickness, the film sensitivity will be different according to the thickness of lead foil and film type. The results on the study, different density and sensitive ratio appeared depending on exposed time and film type, but was made on the following common points. 1. The effect of film sensitivity by the front lead foil showed rapid increase up to the thickness of more or less 0.03mm, and the thicker lead foil was decreased more in the thickness of about $0.05{\sim}0.09mm$. 2. The effect of film sensitivity by the back lead foil was increased up to around of $0.03{\sim}0.08mm$ thickness, the maximum sensitivity was obtained in the thickness of more than $0.03{\sim}0.08mm$ without any change in the above effect. 3. The sensitivity of front lead foil was higher than that of back lead foil in thin lead foil with about 0.127mm thickness, but the sensitivity of back lead foil was higher than that of front lead foil when thickness became thicker.

  • PDF

Improvement of Electrochemical Characteristics and Study of Deterioration of Aluminum Foil in Organic Electrolytes for EDLC

  • Lee, Mun-Soo;Kim, Donna H.;Kim, Seung-Cheon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.9-19
    • /
    • 2018
  • The anodic behavior of aluminum (Al) foils with varying purity, capacitance, and withstand voltage in organic electrolytes was examined for EDLC. The results of cyclic voltammetry (CV) and chronoamperometry (CA) experiments showed that the electrochemical stability improves when Al foil has higher purity, lower capacitance, and higher withstand voltage. To improve the electrochemical stability of EDLC current collectors made of low-purity foil (99.4% Al foil), the foil was modified by chemical etching to reduce its capacitance to $60{\mu}F/cm^2$ and forming to have withstand a voltage of 3 Vf. EDLC cells using the modified Al foil as a current collector were made to 2.7 V with 360 F, and a constant voltage load test was subsequently performed for 2500 hours at high temperature under a rated voltage of 2.7 V. The reliability and stability of the EDLC cell improved when the modified Al foil was used as a current collector. To understand the deterioration process of the Al current collector, standard cells made of conventional Al foil under a constant voltage load test were disassembled, and the surface changes of the foil were measured every 500 hours. The Al foil became increasingly corroded, causing the adhesion between the AC coating layer and the Al foil to weaken, and it was confirmed that partial AC coating layer peeling occurred.

Performance Predictions of Gas Foil Bearing with Leaf Foils Supported on Bumps (범프로 지지되는 다엽 포일을 갖는 가스 포일 베어링의 성능 해석)

  • Kim, T.H.;Mun, H.W.
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.75-83
    • /
    • 2018
  • Microturbomachinery (< 250 kW) using gas foil bearings can function without oil lubricants, simplify rotor-bearing systems, and demonstrate excellent rotordynamic stability at high speeds. State-of-the-art technologies generally use bump foil bearings or leaf foil bearings due to the specific advantages of each of the two types. Although these two types of bearings have been studied extensively, there are very few studies on leaf-bump foil bearings, which are a combination of the two aforementioned bearings. In this work, we illustrate a simple mathematical model of the leaf-bump foil bearing with leaf foils supported on bumps, and predict its static and dynamic performances. The analysis uses the simple elastic model for bumps that was previously developed and verified using experimental data, adds a leaf foil model, and solves the Reynolds equation for isothermal, isoviscous, and ideal gas fluid flow. The model predicts that the drag torques of the leaf-bump foil bearings are not affected significantly by static load and bearing clearance. Due to the preload effect of the leaf foils, rotor spinning, even under null static load, generates significant hydrodynamic pressure with its peak near the trailing edge of each leaf foil. A parametric study reveals that, while the journal eccentricity and minimum film thickness decrease, the drag torque, direct stiffness, and direct damping increase with increasing bump stiffness. The journal attitude angle and cross-coupled stiffness remain nearly constant with increasing bump stiffness. Interestingly, they are significantly smaller compared to the corresponding values obtained for bump foil bearings, thus, implying favorable rotor stability performance.

A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps (범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구)

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho
    • Tribology and Lubricants
    • /
    • v.22 no.5
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.