• Title/Summary/Keyword: focal ischemia

Search Result 147, Processing Time 0.035 seconds

The neuroprotective effect of Acori graminei rhizoma extract against cerebral ischemia in rats (석창포(石菖蒲)가 뇌허혈(腦虛血)을 유발(誘發)시킨 백서(白鼠)에서의 뇌신경보호효과(腦神經保護效果))

  • Keum, Hyeon-Su;Jeon, Yeon-Yi;Lee, Eun-Ju;Park, Chi-Sang;Park, Chang-Gook;Heo, Jin-Hwa;Yang, Chae-Ha;Cho, Jung-Sook;Kang, Seoung-Jun
    • The Journal of Internal Korean Medicine
    • /
    • v.22 no.3
    • /
    • pp.341-351
    • /
    • 2001
  • Object: Acori graminei rhizoma(AGR) extract is clinically used to treat the cerebral ischemia in Korea. The present study was undertaken to study the neuroprotective effect of AGR extract in middle cerebral artery occlusion(MCAO) rats. Methods: Changes of extracellular levels of glutamate, aspartate, GABA, glycine, taurine, tyrosine, alanine in striatum were collected at 20 minutes interval by in vivo microdialysis and then analyzed by HPLC(high performance liquid chromatography) in rats subjected to permanent focal cerebral ischemia induced by 2 hours of MCAO. AGR extract was orally administrated before MCAO. Different animals were used for measurement of cerebral infarction volume induced by 24 hours of MCAO with TTC staining and image analysis. Result : The infarction volume was decreased and focal cerebral ischemia - induced increase of extracellular glutamate, aspartate, and tyrosine were inhibited after the treatment of AGR extract. On the other hand, the increase of glycine and alanine not but GABA and taurine were enhenced after the treatment of AGR extract. Conclusion: These results suggest that AGR extract can playa role in protecting against cerebral ischemia by regulating extracellular levels of excitatory and inhibitory amino acid neurotransmitters.

  • PDF

Involvement of Cortical Damage in the Ischemia/Reperfusion-Induced Memory Impairment of Wistar Rats

  • Hong, Jin-Tae;Ryu, Seung-Rel;Kim, Hye-Jin;Lee, Sun-Hee;Lee, Byung-Moo;Kim, Pu-Young
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.413-417
    • /
    • 2000
  • The effect of ischemia/reperfusion-induced neuronal damage on the memory impairment were investigated using active avoidance and Morris water maze tasks in Wistar rats. Focal ischemia was induced by 1 h occlusion of the right middle cerebral artery (MCA) of Wistar male rats. Reperfusion was induced by releasing the occlusion and restoring the blood circulation for 24 h. The acquisition and preservation memory tested by active avoidance showed a significant difference between the sham and ischemia/reperfusion group. The water maze acquisition performance was also significant difference between sham and ischemia/repefusion groups in both latency and moving distance. The infarction volume was increased by the ischemia/reperfusion. Furthermore, the cresyl violet staining of the ischemia/reperfusion brain showed severe neuronal damage (pyramidal cell loss) in the cortex in addition to the striatum lesion of brain. This study shows that pyramidal cell damage in the cortex lesion may be partially related to memorial disturbance in the ischemia/reperfusion brain injury.

  • PDF

Exofocal Damage to the Substantia Nigra by Transient Middle Cerebral Artery Occlusion in Rats

  • Jin, Changbae;Yanai, Kazuhiko;Araki, Tsutomu;Watanabe, Takehiko
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.215-215
    • /
    • 1996
  • The present study examined chronic effects of transient focal cerebral ischemia on the substantia nigra, a remote exofocal area, using immunohistochenmical and receptor autoradiographic techniques. Transient focal cerebral ischemia was induced by middle cerebral artery (MCA) occlusion for 60 or 90 min followed by reperfusion using silicone-coated 4-0 nylon monofilament in male Wistar rats. After 1- or 2-week reperfusion following transient MCA occlusion, there were partial losses of tyrosine hydroxylase-immunoreactive dopaminergic neurons, incieases in glial fibrillary acidic protein-immunoreactive cells (gliosis), decreases in [$^3$H]YM-09151-2 binding for dopamine D$_2$ receptors, and marked atrophy in the ipsilateral substantia nigra. The precise mechanism(s) of exofocal damage to the substantia nigra is remained to be elucidated.

  • PDF

Fluoxetine and Sertraline Attenuate Postischemic Brain Injury in Mice

  • Shin, Tae-Kyeong;Kang, Mi-Sun;Lee, Ho-Youn;Seo, Moo-Sang;Kim, Si-Geun;Kim, Chi-Dae;Lee, Won-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 2009
  • This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine- and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1 ${\alpha}$ (HIF-1 ${\alpha}$) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1 ${\alpha}$ proteins expression, thereby providing a benefit in therapy of cerebral ischemia.

Neuroprotective Effect of $NeuBo153^{\circledR}$ on Transient Focal Cerebral Ischemia in Rats ($NeuBo153^{\circledR}$의 중풍동물 모델에 대한 뇌신경 보호효과)

  • Bu, Young-Min;Oh, Se-Nam;Hwang, Man-Ki;Chung, Jin-Hee;Lee, Dae-Hee;Park, Young-Mee;Kim, Mi-Yon;Kim, Zhen-Hwa;Kim, Ho-Cheol
    • The Korea Journal of Herbology
    • /
    • v.21 no.2
    • /
    • pp.151-158
    • /
    • 2006
  • Objectives : The purpose of the present study is to observe the neuroprotective effect of the $NeuBo153^{\circledR}$ on transient focal cerebral ischemia in rats. Methods : $NeuBo153^{\circledR}$ was made by mixing the herbs, mainly the root of Panax ginseng, the root of Rehmannia glutinosa and Poria cocos, the stem bark of Acanthopanax senticosus, the root of Scutellaria baicalensis and Mel, and heating for 96 hours. Transient Focal cerebral ischemia (2 h of ischemia, 22 h of reperfusion) was induced by intraluminal suture method with SD rats. Sensory motor function was tested by rotarod test, prehensile traction test, beam balance test and foot fault test at 24 h after ischemia. The brain slices were stained by 2% 2, 3, 5-triphenyltetrazolium chloride and the infarct volume was measured by graphic analyzer at 24 h after ischemia. Results : $NeuBo153^{\circledR}$ treated group did not show significant differences compared with vehicle treated group in body temperature. Oral administration of $NeuBo153^{\circledR}$ reduced brain infarct volume by 29.7% compared with vehicle treated group. $NeuBo153^{\circledR}$ also showed protective effects on sensory motor functional deficits. Conclusion : $NeuBo153^{\circledR}$ treatment reduced brain damage and improved functional deficits induced by MCAo. It showed neuroprotective effects even when treatment was relayed 2 h after injury. Further research is required to evaluating long term functional recovery am accurate therapeutic range and mechanisms.

  • PDF

The Effects of Methanol Extract from Cheonggukjang in T98G Cells and Early Stage of Focal Ischemia Rodent Models (청국장 메탄올 추출물이 T98G 세포와 허혈성 뇌졸중 백서에 미치는 영향)

  • Han, Kyung-Hoon;Kim, Doh-Hee;Song, Kwan-Young;Lee, Seog-Won;Han, Sung-Hee
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.6
    • /
    • pp.965-972
    • /
    • 2015
  • This study was conducted to evaluate the neuroprotective effects of Cheonggukjang extract in in-vitro and in-vivo models. T98G-human glioblastoma cells were pretreated with various concentrations (1~10 mg/mL) of Cheonggukjang extract for 24 h and then exposed to $H_2O_2$ (1 mM) for 3 h. The neuroprotective effects of Cheonggukjang extract were measured using a CCK-8 kit assay, total antioxidant capacity (TAC) assay, reactive oxygen species (ROS) assay, and lactate dehydrogenase (LDH) release assay. The early stage focal ischemia rodent model was used as the in-vivo neurotoxicity model. Various concentrations (10~200 mg) of Cheonggukjang extract were administered to the animal models for 1 week. Peripheral blood was analyzed for glutathione peroxidase (GPx) expression by ELISA, and infarct volume reduction was analyzed by TTC staining. Cheonggukjang extract significantly (p<0.05) increased cell viability in T98G cells against $H_2O_2$ as well as against the induced neurotoxicity. Indeed, treatment with the Cheonggukjang extract induced a decrease in ROS and LDH expression and increased TAC significantly (p<0.05). However, Cheonggukjang extract did not induce a decrease in infarct volume or an increase in GPx expression in the in-vivo model. Despite the limitation in neuroprotection, Cheonggukjang extract may be useful for treating ROS injury.

Effects of (-)-Epigallocatechin-3-gallate on Brain Infarction and the Activity Change of Matrix Metalloproteinase-9 Induced by Middle Cerebral Artery Occlusion in Mice

  • Qian, Yong-Ri;Kook, Ji-Hyun;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.11 no.3
    • /
    • pp.85-88
    • /
    • 2007
  • Matrix metalloproteinases (MMPs) can degrade a wide range of extracellular matrix components. It has been reported that MMP-9 are activated after focal ischemia in experimental animals. (-)-Epigallocatechin-3-gallate (EGCG), a major constituent of green tea polyphenols, is a potent free radical scavenger and reduces the neuronal damage caused by oxygen free radicals. And it has been known that EGCG could reduce the infarction volume in focal brain ischemia and inhibit MMP-9 activity. To delineate the relationship between the anti-ischemic action and the MMP-9-inhibiting action of EGCG, we investigated the effect of EGCG on brain infarction and the activity of matrix metalloproteinase-9 induced by permanent middle cerebral artery occlusion (pMCAO) in ICR mice. EGCG (40 mg/kg, i.p. $15{\sim}30min$ prior to MCAO) significantly decreased infarction volume at 24 hr after MCAO. GM 6001 (50 mg/kg, i.p. $15{\sim}30min$ prior to MCAO), a MMP inhibitor, also significantly reduced infarction volume. In zymogram, MMP-9 activities began to increase at ipsilateral cortex at 2 hr after MCAO, and the increments of MMP-9 activities were attenuated by EGCG treatment. Western blot for MMP-9 also showed patterns similar to that of zymogram. These findings demonstrate that the anti-ischemic action of EGCG ire mouse focal cerebral ischemia involves its inhibitory effect on MMP-9.

The Effects of Superior Cervical Sympathetic Ganglion Block on the Acute Phase Injury and Long Term Protection against Focal Cerebral Ischemia/Reperfusion Injury in Rats (백서의 국소 뇌허혈/재관류로 인한 신경손상에서 상경부 교감 신경절 블록의 급성기 및 장기 보호효과)

  • Jeon, Hae Young;Joung, Kyoung Woon;Choi, Jae Moon;Kim, Yoo Kyung;Shin, Jin Woo;Leem, Jeong Gill;Han, Sung Min
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglia (SCG), and these nerves may influence the cerebral blood flow. The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats that were subjected to focal cerebral ischemia/reperfusion injury. Methods: Eighty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of two groups (the ropivacaine group and a control group). In all the animals, brain injury was induced by middle cerebral artery (MCA) reperfusion that followed MCA occlusion for 2 hours. The animals of the ropivacaine group received $30{\mu}l$ of 0.75% ropivacaine, and their SCG. Neurologic score was assessed at 1, 3, 7 and 14 days after brain injury. Brain tissue samples were then collected. The infarct ratio was measured by 2.3.5-triphenyltetrazolium chloride staining. The terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeled (TUNEL) reactive cells and the cells showing caspase-3 activity were counted as markers of apoptosis at the caudoputamen and frontoparietal cortex. Results: The death rate, the neurologic score and the infarction ratio were significantly less in the ropivacaine group 24 hr after ischemia/reperfusion injury. The number of TUNEL positive cells in the ropivacaine group was significantly lower than those values of the control group in the frontoparietal cortex at 3 days after injury, but the caspase-3 activity was higher in the ropivacaine group than that in the control group at 1 day after injury. Conclusions: The study data indicated that a superior cervical sympathetic ganglion block may reduce the neuronal injury caused by focal cerebral ischemia/reperfusion, but it may not prevent the delayed damage.

Effect of Sophora Subprostrata Fractions on Focal Ischemic Brain Damage Induced by Middle Cerebral Artery Occlusion in Rats(II) (광두근 분획물이 중대뇌동맥폐쇄에 의한 뇌허혈손상에 미치는 효과(II) -조직화학적 평가를 기준으로-)

  • Choi Moon-Seok;Kim Youn-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.993-999
    • /
    • 2005
  • This research was peformed to investigate protective effect of Sophora Subprostrata fractions against focal ischemic brain damage after middle cerebral artery(MCA) occlusion using intraluminal suture. Rats were divided into six groups: MCA-occluded group(Control): each administered groups with Sophora Subprostrata total phase(Total), Sophora Subprostrata Aqueous phase (Aqueous), Sophora Subprostrata BuOH phase(BuOH), and Sophora Subprostrata Alkaloid phase(Alkaloid) after MCA-occlusion; sham-operated group(Sham). The right MCA was occluded by A poly-L-lysine coated 4-0 nylon suture thread through the internal carotid artery permanently. Sophora Subprostrata and fractions were administered orally(Smg/ml) for 7 days after MCA-occlusion. The Drain tissue was stained with $2\%$ triphenyl tetrazolium chloride on ischemic brain tissue(2mm section). The results showed that 1) Sophora Subprostrata total phase reduced infarct size and total infarct volume compared to the control group at 24 hours after MCA-occlusion, 2) Sophora Subprostrata Aqueous phase reduced infarct size and total infarct volume compared to the control group at 24 hours after MCA-occlusion, 3) Sophora Subprostrata Alkaloid phase reduced infarct size compared to the control group at 24 hours after MCA-occlusion, but 4) at 7 days after MCA-occlusion, Sophora Subprostrata did not show effective recovery compared with control group. Sophora Subprostrata has protective effects against brain damage at the early stage of focal cerebral ischemia. Sophora Subprostrata total and Aqueous phase produced more pronounced protective effect against focal ischemic brain damage.