Fluoxetine and Sertraline Attenuate Postischemic Brain Injury in Mice

  • Shin, Tae-Kyeong (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Kang, Mi-Sun (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Lee, Ho-Youn (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Seo, Moo-Sang (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Kim, Si-Geun (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Kim, Chi-Dae (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine) ;
  • Lee, Won-Suk (Department of Pharmacology, Medical Research Center for Ischemic Tissue Regeneration, Pusan National University School of Medicine)
  • Published : 2009.06.30

Abstract

This study aimed to investigate whether selective serotonin reuptake inhibitors (SSRIs) attenuate brain injury and facilitate recovery following photothrombotic cortical ischemia in mice. Male ICR mice were anesthetized and systemically administered Rose Bengal. Permanent focal ischemia was induced in the medial frontal and somatosensory cortices by irradiating the skull with cold light laser. The animals were treated with fluoxetine or sertraline once a day for 14 d starting 1 h after ischemic insult. Treatment with fluoxetine and sertraline significantly reduced the infarct size. The Evans blue extravasation indices of the fluoxetine- and sertraline-treated groups were significantly lower than that of the vehicle group. Treatment with fluoxetine and sertraline shifted the lower limit of the mean arterial blood pressure for cerebral blood flow autoregulation toward normal, and significantly increased the expression of heme oxygenase-1 (HO-1) and hypoxia-inducible factor-1 ${\alpha}$ (HIF-1 ${\alpha}$) proteins in the ischemic region. These results suggest that SSRIs, such as fluoxetine and sertraline, facilitate recovery following photothrombotic cortical ischemia via enhancement of HO-1 and HIF-1 ${\alpha}$ proteins expression, thereby providing a benefit in therapy of cerebral ischemia.

Keywords

References

  1. Acker T, Acker H. Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207: 3171−3188, 2004 https://doi.org/10.1242/jeb.01075
  2. Andersen G, Vestergaard K, Riis J, Lauritzen L. Incidence of post-stroke depression during the first year in a large unselected stroke population determined using a valid standardized rating scale. Acta Psychiatr Scand 90: 190−195, 1994b https://doi.org/10.1111/j.1600-0447.1994.tb01576.x
  3. Arboix A, Garcia-Eroles L, Comes E, Oliveres M, Balcells M, Pacheco G, Targa C. Predicting spontaneous early neurological recovery after acute ischemic stroke. Eur J Neurol 10: 429−435, 2003 https://doi.org/10.1046/j.1468-1331.2003.00630.x
  4. Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM. Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17: 1304−1308, 1986 https://doi.org/10.1161/01.STR.17.6.1304
  5. Betz AL. Vasogenic brain edema. In: Welch KMA, Caplan LR, Reis DJ, Siesj BK, Weir B, ed, Primer on cerebrovascular diseases. San Diego: Academic Press, p 56−159, 1997
  6. Bhardwaj A, Alkayed NJ, Kirsch JR, Hurn PD. Mechanisms of ischemic brain damage. Curr Cardiol Rep 5: 160−167, 2003 https://doi.org/10.1007/s11886-003-0085-1
  7. Bhogal SK, Teasell R, Foley N, Speechley M. Heterocyclics and selective serotonin reuptake inhibitors in the treatment and prevention of post-stroke depression. J Am Geriatr Soc 53: 1051−1057, 2005 https://doi.org/10.1111/j.1532-5415.2005.53310.x
  8. Bidmon HJ, Emde B, Oermann E, Kubitz R, Witte OW, Zilles K. Heme oxygenase-1 (HSP-32) and heme oxygenase-2 induction in neurons and glial cells of cerebral regions and its relation to iron accumulation after focal cortical photothrombosis. Exp Neurol 168: 1−22, 2001 https://doi.org/10.1006/exnr.2000.7456
  9. Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 15: 220−226, 1994 https://doi.org/10.1016/0165-6147(94)90315-8
  10. Bonne O, Krausz Y, Gorfine M, Karger H, Gelfin Y, Shapira B, Chisin R, Lerer B. Cerebral hypoperfusion in medication resistant, depressed patients assessed by Tc99m HMPAO SPECT. J Affect Disord 41: 163−171, 1996 https://doi.org/10.1016/S0165-0327(96)00058-4
  11. Bonvento G, MacKenzie ET, Edvinsson L. Serotonergic innervation of the cerebral vasculature: relevance to migraine and ischaemia. Brain Res Brain Res Rev 16: 257−263, 1991 https://doi.org/10.1016/0165-0173(91)90009-W
  12. Chiou SH, Chen SJ, Peng CH, Chang YL, Ku HH, Hsu WM, Ho LL, Lee CH. Fluoxetine up-regulates expression of cellular FLICE-inhibitory protein and inhibits LPS-induced apoptosis in hippocampus-derived neural stem cell. Biochem Biophys Res Commun 343: 391−400, 2006 https://doi.org/10.1016/j.bbrc.2006.02.180
  13. Dam M, Tonin P, De Boni A, Pizzolato G, Casson S, Ermani M, Freo U, Piron L, Battistin L. Effects of fluoxetine and maprotiline on functional recovery in post-stroke hemiplegic patients undergoing rehabilitation therapy. Stroke 27: 1211−1214, 1996
  14. Dawn B, Bolli R. HO-1 induction by HIF-1: a new mechanism for delayed cardioprotection? Am J Physiol Heart Circ Physiol 289: H522−H524, 2005 https://doi.org/10.1152/ajpheart.00274.2005
  15. Demougeot C, Van Hoecke M, Bertrand N, Prigent-Tessier A, Mossiat C, Beley A, Marie C. Cytoprotective efficacy and mechanisms of the liposoluble iron chelator 2,2'-dipyridyl in the rat photothrombotic ischemic stroke model. J Pharmacol Exp Ther 311: 1080−1087, 2004 https://doi.org/10.1124/jpet.104.072744
  16. Dijkhuizen RM, Ren J, Mandeville JB, Wu O, Ozdag FM, Moskowitz MA, Rosen BR, Finklestein SP. Functional magnetic resonance imaging of reorganization in rat brain after stroke. Proc Natl Acad Sci U S A 98: 12766−12771, 2001. https://doi.org/10.1073/pnas.231235598
  17. Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 54: 597−606, 1997 https://doi.org/10.1001/archpsyc.1997.01830190015002
  18. Fu R, Zhao ZQ, Zhao HY, Zhao JS, Zhu XL. Expression of heme oxygenase-1 protein and messenger RNA in permanent cerebral ischemia in rats. Neurol Res 28: 38−45, 2006 https://doi.org/10.1179/016164106X91852
  19. Gainotti G, Antonucci G, Marra C, Paolucci S. Relation between depression after stroke, antidepressant therapy, and functional recovery. J Neurol Neurosurg Psychiatry 71: 258−261, 2001 https://doi.org/10.1136/jnnp.71.2.258
  20. Geddes JW, Pettigrew LC, Holtz ML, Craddock SD, Maines MD. Permanent focal and transient global cerebral ischemia increase glial and neuronal expression of heme oxygenase-1, but not heme oxygenase-2 protein in rat brain. Neurosci Lett 210: 205−208, 1996 https://doi.org/10.1016/0304-3940(96)12703-8
  21. Goodwin GM, de Souza RJ, Green AR. Attenuation by electroconvulsive shock and antidepressant drugs of the 5-HT1A receptor- mediated hypothermia and serotonin syndrome produced by 8-OH-DPAT in the rat. Psychopharmacology 91: 500−505, 1987 https://doi.org/10.1007/BF00216018
  22. Hanlon CA, Buffington AL, McKeown MJ. New brain networks are active after right MCA stroke when moving the ipsilesional arm. Neurology 64: 114−120, 2005 https://doi.org/10.1212/01.WNL.0000148726.45458.A9
  23. Harukuni I, Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia. Neurol Clin 24: 1−21, 2006 https://doi.org/10.1016/j.ncl.2005.10.004
  24. Hensler JG, Kovachich GB, Frazer A. A quantitative autoradiographic study of serotonin1A receptor regulation. Effect of 5,7 dihydroxytryptamine and antidepressant treatments. Neuropsychopharmacology 4: 131−144, 1991
  25. Ishii H, Bertrand N, Stanimirovic D, Strasser A, Mrsulja BB, Spatz M. The relationship between cerebral ischemic edema and monoamines: revisited. Acta Neurochir Suppl (Wien) 60: 238−241, 1994
  26. Jakovljevic D, Tuomilehto J. Use of selective serotonin reuptake inhibitors and the risk of stroke: is there reason for concern? Stroke 33: 1448−1449, 2002 https://doi.org/10.1161/01.STR.0000018582.96060.3E
  27. Kim JS, Choi S, Kwon SU, Seo YS. Inability to control anger or aggression after stroke. Neurology 58: 1106−1108, 2002 https://doi.org/10.1212/WNL.58.7.1106
  28. Kotila M, Numminen H, Waltimo O, Kaste M. Post-stroke depression and functional recovery in a population-based stroke register. The Finnstroke study. Eur J Neurol 6: 309−312, 1999 https://doi.org/10.1046/j.1468-1331.1999.630309.x
  29. Kreiss DS, Lucki I. Effects of acute and repeated administration of antidepressant drugs on extracellular levels of 5-hydroxytryptamine. J Pharmacol Exp Ther 274: 866−867, 1995
  30. Le Poul E, Boni C, Hanoun N, Laporte AM, Laaris N, Chauveau J, Hamon M, Lanfumey L. Differential adaption of brain 5-HT1A and 5-HT1B receptors and 5-HT transporter in rats treated chronically with fluoxetine. Neuropharmacology 39: 110−122, 2000 https://doi.org/10.1016/S0028-3908(99)00088-X
  31. Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL, Choi AM. Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem 272: 5371−5381, 1997 https://doi.org/10.1074/jbc.272.9.5371
  32. Li Q, Muma NA, Van de Kar LD. Chronic fluoxetine induces a gradual desensitization of 5-HT1A receptors: reductions in hypothalamic and midbrain Gi and Go proteins and in neuroendocrine responses to a 5-HT1A agonist. J Pharmacol Exp Ther 279: 1035−1042, 1996
  33. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37: 517−554, 1997
  34. Malberg JE. Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci 29: 196−205, 2004
  35. Marks GS, Brien JF, Nakatsu K, McLaughlin BE. Does carbon monoxide have a physiological function? Trends Pharmacol Sci 12: 185−188, 1991 https://doi.org/10.1016/0165-6147(91)90544-3
  36. Muhonen MG, Robertson SC, Gerdes JS, Loftus CM. Effects of serotonin on cerebral circulation after middle cerebral artery occlusion. J Neurosurg 87: 301−306, 1997 https://doi.org/10.3171/jns.1997.87.2.0301
  37. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. The influence of age on stroke outcome. The Copenhagen Stroke Study. Stroke 25: 808−813, 1994 https://doi.org/10.1161/01.STR.25.4.808
  38. Nimura T, Weinstein PR, Massa SM, Panter S, Sharp FR. Heme oxygenase-1 (HO-1) protein induction in rat brain following focal ischemia. Brain Res Mol Brain Res 37: 201−208, 1996 https://doi.org/10.1016/0169-328X(95)00315-J
  39. Otterbein LE, Choi AM. Heme oxygenase: colors of defense against cellular stress. Am J Physiol Lung Cell Mol Physiol 279: L1029−L1037, 2000
  40. Panahian N, Yoshiura M, Maines MD. Overexpression of heme oxygenase-1 is neuroprotective in a model of permanent middle cerebral artery occlusion in transgenic mice. J Neurochem 72: 1187−1203, 1999 https://doi.org/10.1111/j.1471-4159.1999.721187.x
  41. Paolucci S, Antonucci G, Grasso MG, Morelli D, Troisi E, Coiro P, De Angelis D, Rizzi F, Bragoni M. Post-stroke depression, antidepressant treatment and rehabilitation results. A case-control study. Cerebrovasc Dis 12: 264−271, 2001 https://doi.org/10.1159/000047714
  42. Parikh RM, Robinson RG, Lipsey JR, Starkstein SE, Fedoroff JP, Price TR. The impact of post-stroke depression on recovery in activities of daily living over a 2-year follow-up. Arch Neurol 47: 785−789, 1990 https://doi.org/10.1001/archneur.1990.00530070083014
  43. Primeau F. Post-stroke depression: a critical review of the literature. Can J Psychiatry 33: 757−765, 1988
  44. Pulsinelli WA. Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63: 29−37, 1985 https://doi.org/10.1016/S0079-6123(08)61973-1
  45. Ramasubbu R, Patten SB. Effect of depression on stroke morbidity and mortality. Can J Psychiatry 48: 250−257, 2003
  46. Rampello L, Battaglia G, Raffaele R, Vecchio I, Alvano A. Is it safe to use antidepressants after a stroke? Expert Opin Drug Saf 4: 885−897, 2005 https://doi.org/10.1517/14740338.4.5.885
  47. Rasmussen A, Lunde M, Poulsen DL, Sørensen K, Qvitzau S, Bech P. A double-blind, placebo-controlled study of sertraline in the prevention of depression in stroke patients. Psychosomatics 44: 216−221, 2003 https://doi.org/10.1176/appi.psy.44.3.216
  48. Robinson RG, Schultz SK, Castillo C, Kopel T, Kosier JT, Newman RM, Curdue K, Petracca G, Starkstein SE. Nortriptyline versus fluoxetine in the treatment of depression and in short-term recovery after stroke: a placebo-controlled, double-blind study. Am J Psychiatry 157: 351−359, 2000 https://doi.org/10.1176/appi.ajp.157.3.351
  49. Ryter SW, Otterbein LE, Morse D, Choi AM. Heme oxygenase/ carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 234−235: 249−263, 2002
  50. Sanchez V, Camarero J, Esteban B, Peter MJ, Green AR, Colado MI. The mechanisms involved in the long-lasting neuroprotective effect of fluoxetine against MDMA ('ecstasy')-induced degeneration of 5-HT nerve endings in rat brain. Br J Pharmacol 134: 46−57, 2001 https://doi.org/10.1038/sj.bjp.0704230
  51. Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol Med 7: 345−350, 2001 https://doi.org/10.1016/S1471-4914(01)02090-1
  52. Semenza GL. Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J Clin Invest 106: 809−812, 2000 https://doi.org/10.1172/JCI11223
  53. Starkstein SE, Robinson RG. Affective disorders and cerebral vascular disease. Br J Psychiatry 154: 170−182, 1989 https://doi.org/10.1192/bjp.154.2.170
  54. Ungvari Z, Pacher P, Kecskemeti V, Koller A. Fluoxetine dilates isolated small cerebral arteries of rats and attenuates constrictions to serotonin, norepinephrine, and a voltage-dependent $Ca^{2+}$ channel opener. Stroke 30: 1949−1954, 1999 https://doi.org/10.1161/01.STR.30.9.1949
  55. Uyama O, Okamura N, Yanase M, Narita M, Kawabata K, Sugita M. Quantitative evaluation of vascular permeability in the gerbil brain after transient ischemia using Evans blue fluorescence. J Cereb Blood Flow Metab 8: 282−284, 1988 https://doi.org/10.1038/jcbfm.1988.59
  56. Verma A, Hirsch DJ, Glatt CE, Ronnett GV, Snyder SH. Carbon monoxide: a putative neural messenger. Science 259: 381−384, 1993 https://doi.org/10.1126/science.7678352
  57. Welch KM, Chabi E, Buckingham J, Bergin B, Achar VS, Meyer JS. Cathecholamine and 5-hydroxytryptamine levels in ischemic brain. Influence of p-chlorophenylalanine. Stroke 8: 341−346, 1977 https://doi.org/10.1161/01.STR.8.3.341