• Title/Summary/Keyword: fly ash-binder ratio

Search Result 185, Processing Time 0.025 seconds

Sulfate and Freeze-thaw Resistance Characteristic of Multi-component Cement Concrete Considering Marine Environment (해양환경을 고려한 다성분계 시멘트 콘크리트의 황산염 및 동결융해 저항 특성)

  • Kim, Myung-Sik;Beak, Dong-Il;Kang, Jun-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.26-32
    • /
    • 2012
  • Recently, concrete using multicomponent blended cement has been required to increase the freeze-thaw and sulfate resistances of concrete structures exposed to a marine environment. Thus, the purpose of this study was to propose the use of concrete containing multicomponent blended cement as one of the alternatives for concrete structures exposed to a marine environment. For this purpose, batches of concrete containing ordinary portland cement (OPC), binary blended cement (OPC-G, G: ground granulated blast slag), ternary blended cement (OPC-GF, F: fly ash), and quaternary blended cement (OPC-GFM, M: mata-kaolin) were made using a water-binder ratio of 50%. Then, the durability levels, including thesulfate and freeze-thaw resistances, were estimated for concrete samples containing OPC, OPC-G, OPC-GF, and OPC-GFM. It was observed from the tests that the durability levels of the concrete samples containing OPC-G and OPC-GF were found to be much better than that of the concrete containing OPC. The optimum mixing proportions were a40% replacement ratio of ground granulated blast slag for the binary blended cement and a30% replacement ratio of ground granulated blast slag and 10% fly ash for the ternary blended cement.

Prediction of workability of concrete using design of experiments for mixtures

  • Yeh, I-Cheng
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.1-20
    • /
    • 2008
  • In this study, the effects and the interactions of water content, SP-binder ratio, and water-binder ratio on the workability performance of concrete were investigated. The experiments were designed based on flatted simplex-centroid experiment design modified from standard simplex-centroid one. The data gotten from the design was used to build the concrete slump model using neural networks. Research reported in this paper shows that a small number of slump experiments can be performed and meaningful data obtained with the experiment design. Such data would be suitable for building slump model using neural networks. The trained network can be satisfactorily used for exploring the effects of the components and their interactions on the workability of concrete. It has found that a high water content and a high SP/b ratio is essential for high workability, but achieving this by increasing these parameters will not in itself guarantee high workability. The w/b played a very important role in producing workability and had rather profound effects; however, the medium value about 0.4 is the best w/b to reach high slump without too much effort on trying to find the appropriate water content and SP/b.

Effect of Mix Ingredients on Modulus of Elasticity of High-Strength Concrete (고강도 콘크리트의 탄성계수에 미치는 배합재료의 영향 평가)

  • 손유신;이승훈;김규동;장일영;박훈규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.31-36
    • /
    • 2001
  • This paper report the effects of mix ingredients on the modulus of elasticity of high-strength concrete. The test of 284 cylinder specimens are conducted for type I with 10% replacement of fly-ash cement concretes. Different water-binder ratio, amounts of water and coarse aggregate as variables were investigated. And also analyzed it statistically by using SAS.

  • PDF

Factors on the Physical Properties of Dry Ready Mixed Cement Mortar for Finishing (마감용 건조모르타르의 물성에 미치는 각 요인의 영향)

  • 정재동;김원기;이영진;송용순;황재현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.138-143
    • /
    • 1993
  • The objective of this report is to investigate the effect of factors like the fineness modulus of sand , content of fly ash and slaked lime, binder/sand ratio, admixture dosage on the physical properties of mortar for finishing. The analysis was performed with design of experiment and air content, water retention and compressive strength were measured.

  • PDF

Strength Development of Low Heat Portland Cement Concrete in High Strength Range (저열 포틀랜드 시멘트 콘크리트의 고강도 영역에서의 강도발현 특성)

  • Ha Jae Dam;Um Tai Sun;Lee Jong Ryul;Kwon Young Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.353-356
    • /
    • 2005
  • Strength development of low heat portland cement(Type IV) concrete in high strength range is tested. In this study strength development according to water-binder ratio, strength development according to age, effect of fly ash and super plasticizer are tested. This study tests effect of low heat portland cement in high strength range concrete and provide guide line concrete mix design for later study and/or construction.

  • PDF

A Fundamental Study on Very High Strength and High Flowable Concrete using Industrial By-products (산업부산물을 활용한 고유동화 초고강도 콘크리트의 기초물성 및 동결융해특성)

  • 김병권;이석홍;정하선;이영남;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.707-714
    • /
    • 2001
  • This paper presents the fundamental study on rational manu(acture of Very High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the VHS concrete(target compressive strength : over 1,000 kgf/$cm^{2}$) which is easily workable (target slump flow : 60$\pm$l0cm), The main variables studied are; 1) test variables to find the optimum replacement ratio of mineral admixture, 2) test variables to find a rational water-binder ratio, a proper binder content, 3) test variables to find the method for reduction of slump loss, 4) test variables to know the influence of air entrainment on frost resistance. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume, and water reducing agent(slump loss reduction type). We found that it is unnecessary to entrain air for freeze-thawing resistance.

  • PDF

Tensile Properties and Adhesion of Hybrid-Type Anti-Corrosion Polymer Cement Slurry (하이브리드형 방식 폴리머 시멘트 슬러리의 인장특성 및 접착성)

  • Jo, Young-Kug
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.635-642
    • /
    • 2008
  • In recent years, epoxy-coated reinforcing bars have been widely used in order to prevent the corrosion of ordinary reinforcing bar. However, they have a bad balance between performance and cost. Especially, they have a brittleness properties, low bond strength to cement concrete and no good bend-ability in the field. The purpose of this study is to evaluate the tensile properties and adhesion of hybrid-type anti-corrosion polymer cement slurry (PCS). PCSs are prepared with four types polymer dispersions using fly ash and silica fume, and tested for proper coating thickness, tensile properties, adhesion to steel plate and bend-ability. From the test results, the viscosity of PCS is effected by polymer dispersion types, and is a little decreased by using fly ash. The coating thickness of PCS has a proper thickness at polymer-binder ratio of 100%. It is apparent that the coating thickness has various values according to viscosity of PCS, water-binder ratio and polymer-binder rato. PCS has a good various anticorrosion properties and physical properties such as tensile strength, adhesion and bend-ability. It is also recommended that proper coating thickness to reinforcing bar is in the ranges of 150 to $250{\mu}m$ for bond strength, adhesion and bend-ability. It is also expected that the coated reinforcing bar using PCS is widely used instead of epoxy coated reinforcing bar in the industrial field.

Development of lightweight concrete using the PCM II : Investigation on Foam Volume/Fly Ash Relationship of Foam Concrete, and Effect of High Content Micro Polypropylene Fiber and Microstructure

  • Lim, Myung-Kwan;Enkhbold, odontuya;Choi, Dong-Uk
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.45-52
    • /
    • 2015
  • Purpose: Foam concrete is the concrete that contains large amount of air voids inside. In general, the density of foam concrete depends on parameters like water/binder ratio, foam volume, aggregate and pozzolan content, etc. Method: In this study, the effect of foam volume and fly ash content on dry density is investigated intensively in order to find the relationship between each parameter and their abilities to counteract with each other. According to the above information, though there are quite a number of studies on the effect micro fiber on foam concrete at low volume fractions, there is still lack of information especially on the high fiber content side. The objective of the second study is to investigate further on the use of micro fiber at higher volume fraction and fill in the lacking information. Beside from this study, the investigation of the effect of micro-fiber (polypropylene) to enhance the properties of foam concrete is also carried out. Result: Of the two variables that are investigated in this study, the foam volume and the fly ash content, show significant effect on the properties of foam concrete. The foam volume tends to decrease the density and strength of foam concrete. In the second part of our study, a large fibre volume fraction is proved to be able to evidently increase the flexural strength of foam concrete up to about 40% due to the effect of fibre bridging over the crack and a significant number of fibres that intercepts the crack surfaces. However, the compressive strength is found to decrease severely due to the occurrence of large pores as the result of fibre being added into concrete mixture.

The Estimation of Optimal Mixing Ratio of CLSM Mixed with Red Mud and Paper Sludge Ash (Red mud와 제지회를 혼합한 CLSM의 적정 혼합비 산정)

  • Roh, Seongoh;Kim, Taeyeon;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Recently, numerous studies are being performed to examine alkali-activated cement which uses industrial by-products, such as GGBS and fly ash, as well as alkali activators. Alkali-activated cement is a type of binder that exerts the same strength as cement without using cement by mixing industrial by-products with alkali activators. Alkali activators, which are used mainly for carbon-reducing technologies and alkali activation, are expensive and difficult to apply in the field due to risks related to strong alkalinity. Therefore, this study intends to explore methods to use red mud as a substitute for an alkali activator. To that end, this study has evaluated engineering properties, such as flow and strength, of CLSM that uses red mud and paper sludge ash as binders and its possibility to cause soil pollution. This study also aims to present the appropriate mixing ratios of red mud and paper sludge ash to produce CLSM.

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests (해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가)

  • Yoon, Yong-Sik;Lim, Hee-Seob;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.3
    • /
    • pp.119-126
    • /
    • 2019
  • In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.