• Title/Summary/Keyword: flux transfer method

Search Result 271, Processing Time 0.021 seconds

A New Method of Determination for the Trace Ruthenium in High Purity Palladium by Neutron Activation Analysis (방사화 분석에 의한 고순도 팔라듐 금속중의 미량 루테늄에 관한 새로운 정량법)

  • Lee, Chul;Yim, Yung-Chang;Uhm, Kyung-Ja;Chung, Koo-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.15 no.4
    • /
    • pp.191-197
    • /
    • 1971
  • Ruthenium content in highly purified palladium metal (99.9%) was determined by counting $^{105}Rh$ nuclide which was produced by $^{104}Ru(n,{\gamma};{\beta}^-)^{105}Rh$ nuclear reaction. Palladium sample and ruthenium standard were irradiated by neutron with the Pneumatic Transfer System of TRIGA MARK II reactor. Palladium and ruthenium were dissolved by treating with aqua-regia and by fusing with sodium peroxide flux respectively. $^{105}Rh$ was separated through anion and cation exchange resin columns. The ruthenium content was determined by comparing the $^{105}Rh$ activities, obtained from the palladium sample, with that from pure ruthenium standard. The detection limit of ruthenium by the present method is about 1 ppm of ruthenium in 10 mg of palladium, which is approximately 40 times more sensitive than that of the conventional radioactivation method which employs $^{102}Ru(n,{\gamma})^{103}Ru$ nuclear reaction.

  • PDF

A Study of the Structure and Luminescence Properly of BaMgAl10O17:Eu2+ Blue Phosphor using Scattering Method (Scattering법을 이용한 BaMgAl10O17:Eu2+ 청색형광체의 구조와 발광특성 연구)

  • 김광복;김용일;구경완;천희곤;조동율
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.67-74
    • /
    • 2002
  • A phosphor for Plasma Display Panel, BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$, showing a blue emission band at about 450nm was prepared by a solid-state reaction using BaCO$_3$, $Al_2$O$_3$, MgO, Eu$_2$O$_3$ as starting materials wish flux AlF$_3$. The study of the behaviour of Eu in BAM phosphor was carried out by the photoluminescence spectra and the Rietveld method with X-ray and neutron powder diffraction data to refine the structural parameters such as lattice constants, the valence state of Eu, the preferential site of Mg atom and the site fraction of each atom. The phenomenon of the concentration quenching was abound 2.25~2.3wt% of Eu due to a decrease in the critical distance for energy transfer of inter-atomic Eu. Through the combined Rietveld refinement, R-factor, R$_{wp}$, was 8.11%, and the occupancy of Eu and Mg was 0.0882 and 0.526 at critical concentration. The critical distance of Eu$^{2+}$ in BAM was 18.8$\AA$ at 2.25% Eu of the concentration quenching. Furthermore, c/a ratio was decreased to 3.0wt% and no more change was observed over that concentration. The maximum entropy electron density was found that the modeling of $\beta$-alumina structure in BaMgAl$_{10}$ O$_{17}$ :Eu$^{2+}$correct coincided showing Ba, Eu, O atoms of z= 1/4 mirror plane.e.ane.e.

Study on Mathematical Method of Radiation Heat Transfer for Estimating Width of Firebreak in Surface Fire (복사열전달 수치해석을 통한 지표화 방화선 구축 폭 산정에 관한 연구)

  • Kim, Dong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.59-64
    • /
    • 2010
  • Building a firebreak against surface forest fire is a typical indirect suppression method that stops spread of flame by removing surface fuel, such as fallen leaves and bushes. In the sense of fire dynamic, building a firebreak is to set a section which will block thermal energy from igniting on virgin fuel. This study suggests and evaluates a calculation method for width of firebreak against surface fire for variant wind and slope conditions by applying the Point Source Model (PSM) to fallen leaves of Pinus densiflora. Width of firebreak was measured based on the distance the threshold radiant heat igniting Pinus densiflora fallen leaves at the heat flux of $4.9\;kW/m^2$ reaches. As a result, at the wind velocity of 0~5 m/s and on the slope of $0{\sim}50^{\circ}$, the appropriate width of a firebreak was 0.35~0.65 m for the mean flame height and 0.75~1.05 m for the maximum flame height. Accordingly, considering the factor of safety, the most appropriate width of a firebreak is 1.05 m based on the maximum flame height. Additional comparative analyses through experiments and field surveys are deemed necessary to determine appropriate widths of firebreak for different types of surface fuel.

Thermal Deformation Induced Preload Changein the Tilting Pad Journal Bearing (열변형으로 인한 틸팅패드 저널베어링의 예압 변화)

  • Suh, Junho;Hwang, Cheolho
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • This paper focuses on the thermal deformation induced preload change in the tilting pad journal bearing, using a three-dimensional (3D) thermo-hydro-dynamic (THD) approach. Preload is considered as a critical factor in designing the tilting pad journal bearing. The initial preload measured under nil external load and nil thermal gradient is influenced by two factors, namely, the thermal deformation and elastic deformation. Thermal deformation is due to a temperature distribution in the bearing pads, whereas the elastic deformation is due to fluid forces acting on the pads. This study focuses on the changes induced in preload and film clearance due to thermal deformation. The generalized Reynolds equation is used to evaluate the force of the fluid and the 3D energy equation is used to calculate the temperature of the lubricant. The abovementioned equations are combined by establishing a relationship between viscosity and temperature. The heat transfer within the bearing pads, the lubricant, and the spinning journal is calculated using the heat flux boundary condition. The 3D Finite Element Method (FEM) is used in modeling the (1) heat conduction in the spinning journal and bearing pads, (2) thermal gradient induced thermal distortion of the spinning journal and pads, and (3) viscous shearing, and heat conduction and convection in a thin film. This evaluation method has an increased fidelity, and it can prove to be a cost-effective tool that can be used by designers to predict the dynamic behavior of a bearing.

Thermo-mechanical analysis of reinforced concrete slab using different fire models

  • Suljevic, Samir;Medic, Senad;Hrasnica, Mustafa
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.163-182
    • /
    • 2020
  • Coupled thermo-mechanical analysis of reinforced concrete slab at elevated temperatures from a fire accounting for nonlinear thermal parameters is carried out. The main focus of the paper is put on a one-way continuous reinforced concrete slab exposed to fire from the single (bottom) side as the most typical working condition under fire loading. Although contemporary techniques alongside the fire protection measures are in constant development, in most cases it is not possible to avoid the material deterioration particularly nearby the exposed surface from a fire. Thereby the structural fire resistance of reinforced concrete slabs is mostly influenced by a relative distance between reinforcement and the exposed surface. A parametric study with variable concrete cover ranging from 15 mm to 35 mm is performed. As the first part of a one-way coupled thermo-mechanical analysis, transient nonlinear heat transfer analysis is performed by applying the net heat flux on the exposed surface. The solution of proposed heat analysis is obtained at certain time steps of interest by α-method using the explicit Euler time-integration scheme. Spatial discretization is done by the finite element method using a 1D 2-noded truss element with the temperature nodal values as unknowns. The obtained results in terms of temperature field inside the element are compared with available numerical and experimental results. A high level of agreement can be observed, implying the proposed model capable of describing the temperature field during a fire. Accompanying thermal analysis, mechanical analysis is performed in two ways. Firstly, using the guidelines given in Eurocode 2 - Part 1-2 resulting in the fire resistance rating for the aforementioned concrete cover values. The second way is a fully numerical coupled analysis carried out in general-purpose finite element software DIANA FEA. Both approaches indicate structural fire behavior similar to those observed in large-scale fire tests.

Numerical Study of Bubble Motion During Nucleate Boiling on a Micro-Finned Surface (마이크로 핀 표면 핵비등에서의 기포거동에 대한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1089-1095
    • /
    • 2011
  • Numerical simulation is performed for nucleate boiling on a micro-finned surface, which has been widely used to enhance heat transfer, by solving the equations governing the conservation of mass, momentum, and energy in the liquid and vapor phases. The bubble motion is determined by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the no-slip and contact-angle conditions, as well as the evaporative heat flux from the liquid microlayer on immersed solid surfaces such as micro fins and cavities. The numerical results for bubble formation, growth, and departure on a microstructured surface including fins and cavities show that the bubble behavior during nucleate boiling is significantly influenced by the fin-cavity arrangement and the fin-fin spacing.

Comparative Studies of Thermal Insulation Performance of Life Vests by Numerical Analysis and Experiment (보온 재료에 따른 구명 조끼 별 단열성능의 비교 실험 및 해석)

  • Kim, Sung-Chan;Lee, Kyung-Hoon;Hwang, Se-Yun;Jang, Ho-Sang;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2016
  • Although the life jacket can provide the buoyance with the drowner, heat loss can make the drowned individual be subject to the hypothermia. In this study, The thermal insulation of two types life jacket including inflatable and foam type were evaluate by both experiments and numerical analysis. To estimate the thermal resistance of the jackets, experiments on the heat flux were conducted by the thermal manikin exposed to cold water. Heat flux loss on the surface of thermal manikin were measured for both foam and inflatable type life jacket. Also, finite element method is applied to a body section in order to understand the level of hypothermia of each life jacket. The segmental of human thigh is represented by a multi-layered section which considers the heat conduction within tissue, bone and fat. As a result, the thermal resistance and hypothermia time of each jackets have been compared based on the finite element analysis. It was found that the insulation ability of suggested life jackets is better than that of conventional type.

Molecular Dynamics Simulation on the Thermal Boundary Resistance of a Thin-film and Experimental Validation (분자동역학을 이용한 박막의 열경계저항 예측 및 실험적 검증)

  • Suk, Myung Eun;Kim, Yun Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.103-108
    • /
    • 2019
  • Non-equilibrium molecular dynamics simulation on the thermal boundary resistance(TBR) of an aluminum(Al)/silicon(Si) interface was performed in the present study. The constant heat flux across the Si/Al interface was simulated by adding the kinetic energy in hot Si region and removing the same amount of the energy from the cold Al region. The TBR estimated from the sharp temperature drop at the interface was independent of heat flux and equal to $5.13{\pm}0.17K{\cdot}m^2/GW$ at 300K. The simulation result was experimentally confirmed by the time-domain thermoreflectance technique. A 90nm thick Al film was deposited on a Si(100) wafer using an e-beam evaporator and the TBR on the film/substrate interface was measured using the time-domain thermoreflectance technique based on a femtosecond laser system. A numerical solution of the transient heat conduction equation was obtained using the finite difference method to estimate the TBR value. Experimental results were compared to the prediction and discussions on the nanoscale thermal transport phenomena were made.

Thermal Analysis of the Heat Sink Performance using FEM (유한 요소법을 이용한 히트싱크의 성능평가를 위한 열해석 연구)

  • Lee, Bong-Gu;Lee, Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5467-5473
    • /
    • 2014
  • This study examined the numerical analysis results with respect to the thermal behavior of a natural convection cooled pin-fin heat sink. The heat sink consisted of pin fins integrated with plate fins. The heat sinks were designed with two different types to fit the limited internal space. The two types of heat sinks designed were analyzed using the ANSYS software package, and the numerical analysis results were compared with the cooling performance of the two types of heat sinks. The results of the simulation were analyzed according to the temperature distribution and air flow characteristics, heat flux etc. This study examined the correlation of the cooling performance with the heat sink internal structure and fin shape. FEM (Finite Element Method) confirmed the cooling performance of heat sink type A under natural convection conditions as the best results. The results of the numerical simulation showed that the heat sink type A shape showed an approximately 70 percent better heat transfer rate with natural convection than that of type B.

The Effects of Fuel Pellet Eccentricity on Fuel Rod Thermal Performance (핵연료의 편심이 연료봉 열적 성능에 미치는 영향)

  • Suh Young-Keun;Sohn Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 1988
  • This study investigates the effect of fuel pellet eccentricity on fuel rod thermal performance under the steady state condition. The governing equations in the fuel pellet and the cladding region are set up in 2-dimensional cylindrical coordinate (r, $\theta$) and are solved by finite element method. The angular-dependent heat transfer coefficient in the gap region is used in order to account for the asymmetry of gap width. Material propeties are used as a function of temperature and volumetric heat generation as a function of radial position. The results show the increase of maximum local heat flux at the cladding outer surface and the decrease of maximum and average fuel temperatures due to eccentricity. The former is expected to affect the uncertainties in the minimum DNBR calculation. The latter two are expected to reduce the possibility of fuel melting and the fuel stored energy. Also, the fuel pellet eccentricity introduces asymmetry in fuel pellet temperature and movement of the location of maximum fuel pellet temperature.

  • PDF