• Title/Summary/Keyword: flux angle

Search Result 506, Processing Time 0.028 seconds

Study of Pressure and Flux Pulsation to Design Optimum Valve-Plate Notch and Pulsation-Variables Analysis of Swash-Plate-Type Piston Pump (가변 사판식 피스톤펌프의 맥동 변수 분석 및 최적 밸브플레이트 노치 설계를 위한 압력 및 유량맥동에 관한 연구)

  • Bae, Jun-Hyeong;Chung, Won-Jee;Jang, Jun-Ho;Yoon, Young-Hwan;Jeon, Ju-Yeol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.244-250
    • /
    • 2015
  • We propose a simulation technique to estimate the reduction effect of the pressure/flow pulsation by analysis of the pulsation variables and notch shape of the valve plate of a swash-plate-type variable piston pump. First, using SimulationX$^{(R)}$, we perform a theoretical kinematic analysis according to the variable swash-plate angle and rotational velocity in order to design a single-piston pump. In designing the notch shape of the valve plate of the swash-plate-type variable piston pump as one of the pulsation variables, we investigate the effect of the pulsation by comparing two notch types (circular type and V type). Then, we extend our analysis to a nine-piston pump model. This paper not only confirms the effect of the pressure/flow pulsation according to pulsation variables but can also be applied to the development of a SimulationX$^{(R)}$-based simulation technique for notch-shape optimization for a swash-plate-type variable piston pump.

SPECTROSCOPIC AND PHOTOMETRIC STUDY OF STARBURST GALAXIES: OPTICAL AND NEAR INFRARED PROPERTIES OF A BLUE COMPACT DWARF GALAXY MRK 49 IN THE VIRGO CLUSTER

  • Sung, Eon-Chang;Kyeong, Jae-Mann;Byun, Yong-Ik
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.5
    • /
    • pp.121-137
    • /
    • 2008
  • We present optical and near-infrared imaging and long-slit spectroscopy for the blue compact dwarf galaxy (BCD) Mrk 49 in the Virgo Cluster. The surface brightness distribution analysis shows that Mrk 49 consists of an off-centered blue bright compact core of r = 10" and a red faint outer exponential envelope. The $H_{\alpha}$ image and color difference suggest that these two components have different stellar populations: a high surface brightness population of massive young stars and an underlying low surface brightness population of older stars. The redder near-infrared colors of the inner most region suggest that the near-infrared flux of Mrk 49 originates from evolved massive stars associated with the current star-forming activity. The total apparent magnitude is $B_T\;=\;14.32$ mag and the mean effective surface brightness is ${\mu}_{eff}(B)\;=\;21.56$ mag $arcsec^{-2}$. Long-slit spectroscopy shows that Mrk 49 rotates apparently as a solid body within r = 10" in a plane at position angle 55 degrees with an amplitude of about $20\;km\;sec^{-1}$. The measured radial velocity of Mrk 49 was derived as $1,535\;km\;sec^{-1}$; and the total mass of stars and gases is in the range of 3 to $6\;{\times}\;10^9\;M_{\odot}$. The mass-to-light ratios for the central region of Mrk 49 in I and B band are estimated 1.0 and 0.5, respectively. The upper limit of the dark matter to visible matter ratio seems to be < 5. The oxygen abundance is $12\;+\;\log(O/H)\;=\;8.21\;{\pm}\; 0.1$ which is about one quarter of the solar value while the relative helium abundance appears to be similar to that of the sun.

Production of Ni-Cr Metal Powder by Selective Laser Melting for Dentistry to Observation of Characteristics (치과 SLM용 Ni-Cr 금속분말 특성 관찰)

  • Hong, Minho
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • Purpose: The selective laser melting (SLM) process for dentistry, which is one of the additive manufacturing technologies (AM) allows for rapid production of a three-dimensional model with complex shape by directly melting metal powder. This process generates detailed items of a three-dimensional model shape through consolidation of a thin powder layer by utilizing both selective melting and laser beam simultaneously. In regard to SLM process, Fe-base powder, Ti-6AI-4V powder, AI-base powder, etc. have been researched. It is believed that the aforementioned technologies will be widely utilized in manufacturing metal parts using metal powder of raw material. This study chose Ni-Cr-Mo metal powder in order to manufacture metal powder materials that would be used in the selective laser melting for dentistry. Methods: This study manufactured metal powder using mechanical alloying technique (MA) among those metal powder manufacturing techniques. Moreover, this study aimed to utilize the metal powder manufactured after observing the characteristics of powder as preliminary data of Ni-Cr-Mo metal powder. This study could obtain the following conclusions within the experimental limitations. Results: As a result of mechanically alloying Ni-Cr-Mo powder over time, its mean particle size was $66.93{\mu}m$ $54.4{\mu}m$ and $45.39{\mu}m$ at 10h, 20h and 30h, respectively. The gtain form of metal powder by mechanical alloying technique was a sponge-like shape of irregular plate; however, the gtain form manufactured by high-pressure water aromization process had the following three types: globular type, chain type and oval type. Conclusion: This study found $37.65{\mu}m$ as the mean particle size of Ni-Cr-Mo metal powder, which was manufactured using water atomization technique under the following conditions: water atomization flux of 300 liter/min, hydraulic pressure of $400kgf/cm^2$ and injection angle of $45^{\circ}$. This study confirmed that the grain form of powder (solid particle form) would vary depending on the manufacturing process.

Characteristics of an Optical Waveguide with Two Identical Elliptical Structures (두 개의 동일한 타원형 구조를 지닌 광 도파관의 특성)

  • Jang, SeongHo;Chung, SangHo;Yi, SeungHwan
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.48-54
    • /
    • 2014
  • A unique optical waveguide structure is proposed to enhance the optical characteristics of alcohol screening sensors. This structure is then simulated. The structure consists of two elliptical waveguides that have a common focus to one side and has an IR source and detector at each of the other focal points of the ellipses. When the angle between the two elliptical waveguides is increased from 30 degrees to 90 degrees, the maximum level of irradiance is greatly decreased, falling from $2.23{\times}10^6 W/m^2$ to $5.74{\times}10^5W/m^2$. However, the diameter of the incident rays is at a minimum of 1.86mm and the total incident flux is less than 10% lower when compared to the structure at $90^{\circ}$. It can be seen from the simulation results that this structure might enhance the sensitivity of an optical gas sensor which has a large absorption wavelength.

Experimental Investigation of CHF Enhancement on the Modified Surface Under Pool Boiling (개질된 표면을 이용한 풀비등 임계열유속 증진에 관련한 실험적 연구)

  • Kang, Soon-Ho;Ahn, Ho-Seon;Jo, Hang-Jin;Kim, Moo-Hwan;Kim, Hyung-Mo;Kim, Joon-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.11
    • /
    • pp.840-848
    • /
    • 2009
  • In the boiling heat transfer mechanism, CHF(critical heat flux) is the significantly important parameter of the system. So, many researchers have been struggling to enhance the CHF of the system in enormous methods. Recently, there were lots of researches about enormous CHF enhancement with the nanofluids. In that, the pool boiling CHF in nanofluids has the significantly increased value compared to that in pure water because of the deposition of the nanoparticle on the heater surface in the nanofluids. The aim of this study is the comparison of the effect of the nanoparticle deposited surface and the modified surface which has the similar morphology and made by MEMS fabrication. The nanoparticle deposited surface has the complex structures in nano-micro scale. Therefore, we fabricated the surfaces which has the similar wettability and coated with the micro size post and nano structure. The experiment is performed in 3 cases : the bare surface with 0.002% water-ZnO nanofluids, the nanoparticle deposited surface with pure water and the new fabricated surface with pure water. The contact angle, a representative parameter of the wettability, of the all 3 cases has the similar value about 0 and the SEM(scanning electron microscope) images of the surfaces show the complex nano-micro structure. From the pool boiling experiment of the each case, the nanoparticle deposited surface with pure water and the fabricated surface with pure water has the almost same CHF value. In other words, the CHF enhancement of the nanoparticle deposited surface is the surface effect. It also shows that the new fabricated surface follows the nanoparticle deposited surface well.

A Study on Drag Reduction Agency for Gas Pipeline

  • Zhang Qibin;Fan Yunpeng;Lin Zhu;Zhang Li;Xu Cuizhu;Han Wenli
    • Corrosion Science and Technology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2008
  • The drag reduction agency (DRA) for gas pipeline, a novel method used for reducing friction or drag on a gas flowing to increase the transmission efficiency of gas pipeline, is a more flexible and economical technology than internal flow efficient coatings. In this paper, an effective DRA has been developed in Authors' Institute by analyzing the hydrodynamic friction resistance on internal gas pipeline and then studying the work mechanism and molecular structure of DRA. In the meantime, a group of property test for selecting DRA material has been determined, including viscosity, contact angle, volatility, corrosion, slab extending, and flow behavior in horizontal tube. The inhibition efficiency and drag reduction efficiency of the developed DRA have been investigated finally based on the relevant test methods. Results of corrosion test show that the developed DRA has very good inhibition effect on mild steel by brushing a thin layer of DRA on steel specimens, giving inhibition efficiency of 91.2% and 73.1% in 3%NaCl solution and standard salt fog environment respectively. Results of drag-reducing test also show that the Colebrook formula could be used to calculate friction factors on internal pipes with DRA as the Reynolds number is in the range of $0.75\times10^5\sim2.0\times10^5$. By comparing with normal industrial pipes, the friction resistance coefficient of the steel pipe with DRA on internal wall decreases by 13% and the gas flux increases by 7.3% in testing condition with Reynolds number of $2.0\times10^5$.

Comparison study of the effect of blending method on PVDF/PPTA blend membrane structure and performance

  • Li, Hongbin;Shi, Wenying;Zhang, Yufeng;Zhou, Rong
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.205-224
    • /
    • 2015
  • A novel hydrophilic poly (vinylidene fluoride)/poly (p-phenylene terephthalamide) (PVDF/PPTA) blend membrane was prepared by in situ polycondensation of p-phenylene diamine (PPD) and terephthaloyl chloride (TPC) in PVDF solution with subsequent nonsolvent induced phase separation (NIPS) process. For comparison, conventional solution blend membrane was prepared directly by adding PVDF powder into PPTA polycondensation solution. Blend membranes were characterized by means of viscometry, X-ray photoelectron spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM). The effects of different blending methods on membrane performance including water contact angle (WCA), mechanical strength, anti-fouling and anti-compression properties were investigated and compared. Stronger interactions between PVDF and PPTA in in situ blend membranes were verified by viscosity and XPS analysis. The incorporation of PPTA accelerated the demixing rate and caused the formation of a more porous structure in blend membranes. In situ blend membranes exhibited better hydrophilicity and higher tensile strength. The optimal values of WCA and tensile strength were $65^{\circ}$ and 34.1 MPa, which were reduced by 26.1% and increased by 26.3% compared with pure PVDF membrane. Additionally, antifouling properties of in situ blend membranes were greatly improved than pure PVDF membrane with an increasing of flux recovery ratio by 25%. Excellent anti-compression properties were obtained in in situ blend membranes with a stable pore morphology. The correlations among membrane formation mechanism, structure and performance were also discussed.

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal

  • Wang, Xiaoping;Li, Nana;Zhao, Yu;Xia, Shengji
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.211-220
    • /
    • 2018
  • Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.

Numerical Study of Bubble Motion During Nucleate Boiling on a Micro-Finned Surface (마이크로 핀 표면 핵비등에서의 기포거동에 대한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.1089-1095
    • /
    • 2011
  • Numerical simulation is performed for nucleate boiling on a micro-finned surface, which has been widely used to enhance heat transfer, by solving the equations governing the conservation of mass, momentum, and energy in the liquid and vapor phases. The bubble motion is determined by a sharp-interface level-set method, which is modified to include the effect of phase change and to treat the no-slip and contact-angle conditions, as well as the evaporative heat flux from the liquid microlayer on immersed solid surfaces such as micro fins and cavities. The numerical results for bubble formation, growth, and departure on a microstructured surface including fins and cavities show that the bubble behavior during nucleate boiling is significantly influenced by the fin-cavity arrangement and the fin-fin spacing.

On-orbit test simulation for field angle dependent response measurement of the Amon-Ra energy channel instrument

  • Seong, Sehyun;Kim, Sug-Whan;Ryu, Dongok;Hong, Jinsuk;Lockwood, Mike
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.211.1-211.1
    • /
    • 2012
  • The on-orbit test simulation for predicting the instrument directional responsivity was conducted by the Monte Carlo based integrated ray tracing (IRT) computation technique and analytic flux-to-signal conversion algorithms. For the on-orbit test simulation, the Sun model consists of the Lambertian scattering sphere and emitting spheroid rays, the Amon-Ra instrument is a two-channel including a broadband scanning radiometer (energy channel) and an imager with ${\pm}2^{\circ}$ FOV (visible channel). The solar radiation produced by the Sun model is directed to the instrument viewing port and traced through the dual channel optical train. The instrument model is rotated on its rotation axis and this gives a slow scan of the Sun model over the full field of view. The direction of the incident lights are fed with scanned images obtained from the visible channel instrument. The instrument responsivity was computed by the ratio of the incident radiation input to the instrument output. In the radiometric simulation, especially, measured BRDF of the 3D CPC was used for scattering effects on radiometry. With diamond turned 3D CPC inner surface, the anisotropic surface scattering model from the measured data was applied to ray tracing computation. The technical details of the on-orbit test simulation are presented together with field-of-view calibration plan.

  • PDF