Browse > Article
http://dx.doi.org/10.12989/mwt.2018.9.4.211

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal  

Wang, Xiaoping (State Key laboratory of Pollution Control and Resources Reuse, Tongji University)
Li, Nana (State Key laboratory of Pollution Control and Resources Reuse, Tongji University)
Zhao, Yu (State Key laboratory of Pollution Control and Resources Reuse, Tongji University)
Xia, Shengji (State Key laboratory of Pollution Control and Resources Reuse, Tongji University)
Publication Information
Membrane and Water Treatment / v.9, no.4, 2018 , pp. 211-220 More about this Journal
Abstract
Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.
Keywords
graphene oxide; polyamide membrane; thin-film composite; interfacial polymerization; PPCPs;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Rahimpour, A., Jahanshahi, M., Mortazavian, N., Madaeni, S.S. and Mansourpanah, Y. (2010), "Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening", Appl. Surf. Sci., 256(6), 1657-1663.   DOI
2 Schultz, M.M., Furlong, E.T., Kolpin, D.W., Werner, S.L., Schoenfuss, H.L., Barber, L.B., Blazer, V.S., Norris, D.O. and Vajda, A.M. (2010), "Antidepressant pharmaceuticals in two US effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue", Environ. Sci. Technol., 44(6), 1918-1925.   DOI
3 Shin, D.H., Kim, N. and Lee, Y.T. (2011), "Modification to the polyamide TFC RO membranes for improvement of chlorineresistance", J. Membr. Sci., 376(1), 302-311.   DOI
4 Skrovanek, D.J., Howe, S.E., Painter, P.C. and Coleman, M.M. (1985), "Hydrogen bonding in polymers: Infrared temperature studies of an amorphous polyamide", Macromolecules, 18(9), 1676-1683.   DOI
5 Song, Y.J., Sun, P., Henry, L.L. and Sun, B.H. (2005), "Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process", J. Membr. Sci., 251(1-2), 67-79.   DOI
6 Stillman, D., Krupp, L. and La, Y.H. (2014), "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 468, 308-316.   DOI
7 Sun, S.P., Hatton, T.A., Chan, S.Y. and Chung, T.S. (2012), "Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water", J. Membr. Sci., 401, 152-162.
8 Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2009a), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1), 149-167.   DOI
9 Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2009b), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1), 168-182.   DOI
10 Tao, H., Liang, X., Zhang, Q. and Chang, C.T. (2015), "Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen", Appl. Surf. Sci., 324, 258-264.   DOI
11 Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities", J. Membr. Sci., 325(1), 58-68.   DOI
12 Ternes, T.A. (1998), "Occurrence of drugs in German sewage treatment plants and rivers", Water Res., 32(11), 3245-3260.   DOI
13 Tiraferri, A. and Elimelech, M. (2012), "Direct quantification of negatively charged functional groups on membrane surfaces", J. Membr. Sci., 389, 499-508.   DOI
14 Tiwari, D., Lalhriatpuia, C., Lee, S.M. and Kong, S.H. (2015), "Efficient application of nano-TiO 2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions", Appl. Surf. Sci., 353, 275-283.   DOI
15 Ulbricht, M. (2006), "Advanced functional polymer membranes", Polymer, 47(7), 2217-2262.   DOI
16 Verliefde, A.R., Cornelissen, E.R., Heijman, S., Petrinic, I., Luxbacher, T., Amy, G., Van der Bruggen, B. and Van Dijk, J. (2009), "Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes", J. Membr. Sci., 330(1), 90-103.   DOI
17 Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purif. Technol., 63(2), 251-263.   DOI
18 Verissimo, S., Peinemann, K.V. and Bordado, J. (2005), "Thinfilm composite hollow fiber membranes: An optimized manufacturing method", J. Membr. Sci., 264(1), 48-55.   DOI
19 Verliefde, A.R., Cornelissen, E., Heijman, S., Verberk, J., Amy, G., Van der Bruggen, B. and Van Dijk, J. (2008), "The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration", J. Membr. Sci., 322(1), 52-66.   DOI
20 Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y. and Li, Y. (2012), "Novel GO-blended PVDF ultrafiltration membranes", Desalination, 299, 50-54.   DOI
21 Widjojo, N., Chung, T.S., Weber, M., Maletzko, C. and Warzelhan, V. (2011), "The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes", J. Membr. Sci., 383(1), 214-223.   DOI
22 Yeh, T.M., Wang, Z., Mahajan, D., Hsiao, B.S. and Chu, B. (2013), "High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers", J. Mater. Chem. A., 1(41), 12998-13003.   DOI
23 Xia, S. and Ni, M. (2015), "Preparation of poly (vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal", J. Membr. Sci., 473, 54-62.   DOI
24 Xia, S., Yao, L., Zhao, Y., Li, N. and Zheng, Y. (2015), "Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal", Chem. Eng. J., 280, 720-727.   DOI
25 Xu, P., Bellona, C. and Drewes, J.E. (2010), "Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilotscale investigations", J. Membr. Sci., 353(1), 111-121.   DOI
26 Kwon, Y.N. and Leckie, J.O. (2006), "Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance", J. Membr. Sci., 282(1), 456-464.   DOI
27 Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C. and Yoon, J. (2007), "Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes" Desalination, 202(1), 16-23.   DOI
28 Zazouli, M.A., Susanto, H., Nasseri, S. and Ulbricht, M. (2009), "Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration", Water Res., 43(13), 3270-3280.   DOI
29 Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. and Zangeneh, H. (2014), "Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates", J. Membr. Sci., 453, 292-301.   DOI
30 Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U. and Watanabe, Y. (2003), "Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds and pharmaceutically active compounds) by NF/RO membranes", J. Membr. Sci., 227(1), 113-121.   DOI
31 Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R., (2008), "Polyamide thin-film nanofiltration membranes containing TiO 2 nanoparticles", Desalination, 219(1), 48-56.   DOI
32 Lee, J., Chae, H.R. Won, Y.J., Lee, K., Lee, C.H., Lee, H.H., Kim, I.C. and Lee, J.M. (2013), "Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment", J. Membr. Sci., 448, 223-230.   DOI
33 Lee, S.Y., Kim, H.J., Patel, R., Im, S.J., Kim, J.H. and Min, B.R. (2007), "Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties", Polym. Adv. Technol., 18(7), 562-568.   DOI
34 Liang, B., Zhan, W., Qi, G., Lin, S., Nan, Q., Liu, Y., Cao, B. and Pan, K. (2015), "High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications", J. Mater. Chem. A., 3(9), 5140-5147.   DOI
35 Lin, Y.L. and Lee, C.H. (2014), "Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes", Ind. Eng. Chem. Res., 53(16), 6798-6806.   DOI
36 Mi, B. (2014), "Graphene oxide membranes for ionic and molecular sieving", Science, 343(6172), 740-742.   DOI
37 Chang, E.E., Chang, Y.C., Liang, C.H., Huang, C.P. and Chiang, P.C. (2012), "Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole and triclosan", J. Hazard. Mater., 221, 19-27.
38 Al-Hobaib, A.S., El Ghoul, J. and El Mir, L. (2015), "Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles", Membr. Water Treat., 6(4), 309-321.   DOI
39 Chae, H.R., Lee, J., Lee, C.H., Kim, I.C. and Park, P.K. (2015), "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling and chlorine resistance", J. Membr. Sci., 483, 128-135.   DOI
40 Mi, B. and Elimelech, M. (2010), "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", J. Membr. Sci., 348(1), 337-345.   DOI
41 Comerton, A.M., Andrews, R.C., Bagley, D.M. and Hao, C. (2008), "The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties", J. Membr. Sci., 313(1), 323-335.   DOI
42 Diaz-Cruz, S. and Barcelo, D. (2004), "Occurrence and analysis of present in waste waters, sludge and sediments", Series Anthropogenic Compounds. Springer-Verlag Berlin Heidelberg, Germany, 227-260.
43 Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S. (2007), "Preparation and characterization of graphene oxide paper", Nature, 448(7152), 457-460.   DOI
44 Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S. (2010), "The chemistry of graphene oxide", Chem. Soc. Rev., 39(1), 228-240.   DOI
45 El-Gendi, A., Ali, S., Abdalla, H. and Saied, M. (2016), "Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions", Membr. Water Treat., 7(1), 55-70.   DOI
46 Bano, S., Mahmood, A., Kim, S.J and Lee, K.H. (2015), "Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties", J. Mater. Chem. A, 3(5), 2065-2071.   DOI
47 Filice, S., D'Angelo, D., Libertino, S., Nicotera, I., Kosma, V., Privitera, V. and Scalese, S. (2015), "Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water", Carbon, 82, 489-499.   DOI
48 Hegab, H.M. and Zou, L. (2015), "Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification", J. Membr. Sci., 484, 95-106.   DOI
49 Gros, M., Rodriguez-Mozaz, S. and Barcelo, D. (2012), "Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-highperformance liquid chromatography coupled to quadrupolelinear ion trap tandem mass spectrometry", J. Chromatogr. A 1248, 104-121.   DOI
50 Gu, J.E., Jun, B.M. and Kwon, Y.N. (2012), "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46(16), 5389-5400.   DOI
51 Hu, M. and Mi, B. (2013), "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47(8), 3715-3723.   DOI
52 Jeong, B.H., Hoek, E.M., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K. and Jawor, A. (2007), "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294(1), 1-7.   DOI
53 Joshi, R., Carbone, P., Wang, F., Kravets, V., Su, Y., Grigorieva, I., Wu, H., Geim, A. and Nair, R. (2014), "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343(6172), 752-754.   DOI
54 Kim, S.H., Kwak, S.Y. and Suzuki, T. (2005), "Positron annihilation spectroscopic evidence to demonstrate the fluxenhancement mechanism in morphology-controlled thin-filmcomposite (TFC) membrane", Environ. Sci. Technol., 39(6), 1764-1770.   DOI
55 Oh, N.W., Jegal, J. and Lee, K.H. (2001), "Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes", J. Appl. Polym. Sci., 80(14), 2729-2736.   DOI
56 Mirfarah, H., Mousavi, S.A., Mortazavi, S.S., Sadeghi, M. and Bastani, D. (2017), "Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process", Membr. Water Treat., 8(4), 323-336.   DOI
57 Nair, R., Wu, H., Jayaram, P., Grigorieva, I. and Geim, A. (2012), "Unimpeded permeation of water through helium-leak(R) Ctight graphene-based membranes", Science, 335(6067), 442-444.   DOI
58 Nicolai, A., Sumpter, B.G. and Meunier, V. (2014), "Tunable water desalination across graphene oxide framework membranes", Phys. Chem. Chem. Phys., 16(18), 8646-8654.   DOI
59 Ozaki, H., Ikejima, N., Shimizu, Y., Fukami, K., Taniguchi, S., Takanami, R., Giri, R. and Matsui, S. (2008), "Rejection of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) by low pressure reverse osmosis membranes", Water Sci. Technol., 58(1), 73-81.   DOI
60 Radjenovi, J., Petrovi, M., Ventura, F. and Barcelo, D. (2008), "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment", Water Res., 42(14), 3601-3610.   DOI