DOI QR코드

DOI QR Code

Preparation of graphene oxide incorporated polyamide thin-film composite membranes for PPCPs removal

  • Wang, Xiaoping (State Key laboratory of Pollution Control and Resources Reuse, Tongji University) ;
  • Li, Nana (State Key laboratory of Pollution Control and Resources Reuse, Tongji University) ;
  • Zhao, Yu (State Key laboratory of Pollution Control and Resources Reuse, Tongji University) ;
  • Xia, Shengji (State Key laboratory of Pollution Control and Resources Reuse, Tongji University)
  • Received : 2016.05.26
  • Accepted : 2017.11.21
  • Published : 2018.07.25

Abstract

Incorporating nano-materials in thin-film composite (TFC) membranes has been considered to be an approach to achieve higher membrane performance in various water treatment processes. This study investigated the rejection efficiency of three target compounds, i.e., reserpine, norfloxacin and tetracycline hydrochloride, by TFC membranes with different graphene oxide proportions. Graphene oxide (GO) was incorporated into the polyamide active layer of a TFC membrane via an interfacial polymerization (IP) reaction. The TFC membranes were characterized with FTIR, FE-SEM, AFM; in addition, the water contact angle measurements as well as the permeation and separation performance were evaluated. The prepared GO-TFC membranes exhibited a much higher flux ($3.11{\pm}0.04L/m2{\cdot}h{\cdot}bar$) than the pristine TFC membranes ($2.12{\pm}0.05L/m2{\cdot}h{\cdot}bar$) without sacrificing their foulant rejection abilities. At the same time, the GO-modified membrane appeared to be less sensitive to pH changes than the pure TFC membrane. A significant improvement in the anti-fouling property of the membrane was observed, which was ascribed to the favorable change in the membrane's hydrophilicity, surface morphology and surface charge through the addition of an appropriate amount of GO. This study predominantly improved the understanding of the different PA/GO membranes and outlined improved industrial applications of such membranes in the future.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, Science and Technology Ministry of China

References

  1. Al-Hobaib, A.S., El Ghoul, J. and El Mir, L. (2015), "Synthesis and characterization of polyamide thin-film nanocomposite membrane containing ZnO nanoparticles", Membr. Water Treat., 6(4), 309-321. https://doi.org/10.12989/mwt.2015.6.4.309
  2. Bano, S., Mahmood, A., Kim, S.J and Lee, K.H. (2015), "Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties", J. Mater. Chem. A, 3(5), 2065-2071. https://doi.org/10.1039/C4TA03607G
  3. Chae, H.R., Lee, J., Lee, C.H., Kim, I.C. and Park, P.K. (2015), "Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling and chlorine resistance", J. Membr. Sci., 483, 128-135. https://doi.org/10.1016/j.memsci.2015.02.045
  4. Chang, E.E., Chang, Y.C., Liang, C.H., Huang, C.P. and Chiang, P.C. (2012), "Identifying the rejection mechanism for nanofiltration membranes fouled by humic acid and calcium ions exemplified by acetaminophen, sulfamethoxazole and triclosan", J. Hazard. Mater., 221, 19-27.
  5. Comerton, A.M., Andrews, R.C., Bagley, D.M. and Hao, C. (2008), "The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties", J. Membr. Sci., 313(1), 323-335. https://doi.org/10.1016/j.memsci.2008.01.021
  6. Diaz-Cruz, S. and Barcelo, D. (2004), "Occurrence and analysis of present in waste waters, sludge and sediments", Series Anthropogenic Compounds. Springer-Verlag Berlin Heidelberg, Germany, 227-260.
  7. Dikin, D.A., Stankovich, S., Zimney, E.J., Piner, R.D., Dommett, G.H., Evmenenko, G., Nguyen, S.T. and Ruoff, R.S. (2007), "Preparation and characterization of graphene oxide paper", Nature, 448(7152), 457-460. https://doi.org/10.1038/nature06016
  8. Dreyer, D.R., Park, S., Bielawski, C.W. and Ruoff, R.S. (2010), "The chemistry of graphene oxide", Chem. Soc. Rev., 39(1), 228-240. https://doi.org/10.1039/B917103G
  9. El-Gendi, A., Ali, S., Abdalla, H. and Saied, M. (2016), "Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions", Membr. Water Treat., 7(1), 55-70. https://doi.org/10.12989/mwt.2016.7.1.055
  10. Filice, S., D'Angelo, D., Libertino, S., Nicotera, I., Kosma, V., Privitera, V. and Scalese, S. (2015), "Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water", Carbon, 82, 489-499. https://doi.org/10.1016/j.carbon.2014.10.093
  11. Gros, M., Rodriguez-Mozaz, S. and Barcelo, D. (2012), "Fast and comprehensive multi-residue analysis of a broad range of human and veterinary pharmaceuticals and some of their metabolites in surface and treated waters by ultra-highperformance liquid chromatography coupled to quadrupolelinear ion trap tandem mass spectrometry", J. Chromatogr. A 1248, 104-121. https://doi.org/10.1016/j.chroma.2012.05.084
  12. Gu, J.E., Jun, B.M. and Kwon, Y.N. (2012), "Effect of chlorination condition and permeability of chlorine species on the chlorination of a polyamide membrane", Water Res., 46(16), 5389-5400. https://doi.org/10.1016/j.watres.2012.07.030
  13. Hegab, H.M. and Zou, L. (2015), "Graphene oxide-assisted membranes: Fabrication and potential applications in desalination and water purification", J. Membr. Sci., 484, 95-106. https://doi.org/10.1016/j.memsci.2015.03.011
  14. Hu, M. and Mi, B. (2013), "Enabling graphene oxide nanosheets as water separation membranes", Environ. Sci. Technol., 47(8), 3715-3723. https://doi.org/10.1021/es400571g
  15. Jeong, B.H., Hoek, E.M., Yan, Y., Subramani, A., Huang, X., Hurwitz, G., Ghosh, A.K. and Jawor, A. (2007), "Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes", J. Membr. Sci., 294(1), 1-7. https://doi.org/10.1016/j.memsci.2007.02.025
  16. Joshi, R., Carbone, P., Wang, F., Kravets, V., Su, Y., Grigorieva, I., Wu, H., Geim, A. and Nair, R. (2014), "Precise and ultrafast molecular sieving through graphene oxide membranes", Science, 343(6172), 752-754. https://doi.org/10.1126/science.1245711
  17. Kim, S.H., Kwak, S.Y. and Suzuki, T. (2005), "Positron annihilation spectroscopic evidence to demonstrate the fluxenhancement mechanism in morphology-controlled thin-filmcomposite (TFC) membrane", Environ. Sci. Technol., 39(6), 1764-1770. https://doi.org/10.1021/es049453k
  18. Kimura, K., Amy, G., Drewes, J.E., Heberer, T., Kim, T.U. and Watanabe, Y. (2003), "Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds and pharmaceutically active compounds) by NF/RO membranes", J. Membr. Sci., 227(1), 113-121. https://doi.org/10.1016/j.memsci.2003.09.005
  19. Kwon, Y.N. and Leckie, J.O. (2006), "Hypochlorite degradation of crosslinked polyamide membranes: II. Changes in hydrogen bonding behavior and performance", J. Membr. Sci., 282(1), 456-464. https://doi.org/10.1016/j.memsci.2006.06.004
  20. Lee, H.S., Im, S.J., Kim, J.H., Kim, H.J., Kim, J.P. and Min, B.R., (2008), "Polyamide thin-film nanofiltration membranes containing TiO 2 nanoparticles", Desalination, 219(1), 48-56. https://doi.org/10.1016/j.desal.2007.06.003
  21. Lee, J., Chae, H.R. Won, Y.J., Lee, K., Lee, C.H., Lee, H.H., Kim, I.C. and Lee, J.M. (2013), "Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment", J. Membr. Sci., 448, 223-230. https://doi.org/10.1016/j.memsci.2013.08.017
  22. Lee, S.Y., Kim, H.J., Patel, R., Im, S.J., Kim, J.H. and Min, B.R. (2007), "Silver nanoparticles immobilized on thin film composite polyamide membrane: Characterization, nanofiltration, antifouling properties", Polym. Adv. Technol., 18(7), 562-568. https://doi.org/10.1002/pat.918
  23. Liang, B., Zhan, W., Qi, G., Lin, S., Nan, Q., Liu, Y., Cao, B. and Pan, K. (2015), "High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications", J. Mater. Chem. A., 3(9), 5140-5147. https://doi.org/10.1039/C4TA06573E
  24. Lin, Y.L. and Lee, C.H. (2014), "Elucidating the rejection mechanisms of PPCPs by nanofiltration and reverse osmosis membranes", Ind. Eng. Chem. Res., 53(16), 6798-6806. https://doi.org/10.1021/ie500114r
  25. Mi, B. (2014), "Graphene oxide membranes for ionic and molecular sieving", Science, 343(6172), 740-742. https://doi.org/10.1126/science.1250247
  26. Mi, B. and Elimelech, M. (2010), "Organic fouling of forward osmosis membranes: Fouling reversibility and cleaning without chemical reagents", J. Membr. Sci., 348(1), 337-345. https://doi.org/10.1016/j.memsci.2009.11.021
  27. Mirfarah, H., Mousavi, S.A., Mortazavi, S.S., Sadeghi, M. and Bastani, D. (2017), "Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process", Membr. Water Treat., 8(4), 323-336. https://doi.org/10.12989/MWT.2017.8.4.323
  28. Nair, R., Wu, H., Jayaram, P., Grigorieva, I. and Geim, A. (2012), "Unimpeded permeation of water through helium-leak(R) Ctight graphene-based membranes", Science, 335(6067), 442-444. https://doi.org/10.1126/science.1211694
  29. Nicolai, A., Sumpter, B.G. and Meunier, V. (2014), "Tunable water desalination across graphene oxide framework membranes", Phys. Chem. Chem. Phys., 16(18), 8646-8654. https://doi.org/10.1039/c4cp01051e
  30. Oh, N.W., Jegal, J. and Lee, K.H. (2001), "Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes", J. Appl. Polym. Sci., 80(14), 2729-2736. https://doi.org/10.1002/app.1387
  31. Ozaki, H., Ikejima, N., Shimizu, Y., Fukami, K., Taniguchi, S., Takanami, R., Giri, R. and Matsui, S. (2008), "Rejection of pharmaceuticals and personal care products (PPCPs) and endocrine disrupting chemicals (EDCs) by low pressure reverse osmosis membranes", Water Sci. Technol., 58(1), 73-81. https://doi.org/10.2166/wst.2008.607
  32. Radjenovi, J., Petrovi, M., Ventura, F. and Barcelo, D. (2008), "Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment", Water Res., 42(14), 3601-3610. https://doi.org/10.1016/j.watres.2008.05.020
  33. Rahimpour, A., Jahanshahi, M., Mortazavian, N., Madaeni, S.S. and Mansourpanah, Y. (2010), "Preparation and characterization of asymmetric polyethersulfone and thin-film composite polyamide nanofiltration membranes for water softening", Appl. Surf. Sci., 256(6), 1657-1663. https://doi.org/10.1016/j.apsusc.2009.09.089
  34. Schultz, M.M., Furlong, E.T., Kolpin, D.W., Werner, S.L., Schoenfuss, H.L., Barber, L.B., Blazer, V.S., Norris, D.O. and Vajda, A.M. (2010), "Antidepressant pharmaceuticals in two US effluent-impacted streams: Occurrence and fate in water and sediment and selective uptake in fish neural tissue", Environ. Sci. Technol., 44(6), 1918-1925. https://doi.org/10.1021/es9022706
  35. Shin, D.H., Kim, N. and Lee, Y.T. (2011), "Modification to the polyamide TFC RO membranes for improvement of chlorineresistance", J. Membr. Sci., 376(1), 302-311. https://doi.org/10.1016/j.memsci.2011.04.045
  36. Skrovanek, D.J., Howe, S.E., Painter, P.C. and Coleman, M.M. (1985), "Hydrogen bonding in polymers: Infrared temperature studies of an amorphous polyamide", Macromolecules, 18(9), 1676-1683. https://doi.org/10.1021/ma00151a006
  37. Song, Y.J., Sun, P., Henry, L.L. and Sun, B.H. (2005), "Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process", J. Membr. Sci., 251(1-2), 67-79. https://doi.org/10.1016/j.memsci.2004.10.042
  38. Stillman, D., Krupp, L. and La, Y.H. (2014), "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 468, 308-316. https://doi.org/10.1016/j.memsci.2014.06.015
  39. Sun, S.P., Hatton, T.A., Chan, S.Y. and Chung, T.S. (2012), "Novel thin-film composite nanofiltration hollow fiber membranes with double repulsion for effective removal of emerging organic matters from water", J. Membr. Sci., 401, 152-162.
  40. Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2009a), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: I. FTIR and XPS characterization of polyamide and coating layer chemistry", Desalination, 242(1), 149-167. https://doi.org/10.1016/j.desal.2008.04.003
  41. Tang, C.Y., Kwon, Y.N. and Leckie, J.O. (2009b), "Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes: II. Membrane physiochemical properties and their dependence on polyamide and coating layers", Desalination, 242(1), 168-182. https://doi.org/10.1016/j.desal.2008.04.004
  42. Tao, H., Liang, X., Zhang, Q. and Chang, C.T. (2015), "Enhanced photoactivity of graphene/titanium dioxide nanotubes for removal of Acetaminophen", Appl. Surf. Sci., 324, 258-264. https://doi.org/10.1016/j.apsusc.2014.10.129
  43. Taurozzi, J.S., Arul, H., Bosak, V.Z., Burban, A.F., Voice, T.C., Bruening, M.L. and Tarabara, V.V. (2008), "Effect of filler incorporation route on the properties of polysulfone-silver nanocomposite membranes of different porosities", J. Membr. Sci., 325(1), 58-68. https://doi.org/10.1016/j.memsci.2008.07.010
  44. Ternes, T.A. (1998), "Occurrence of drugs in German sewage treatment plants and rivers", Water Res., 32(11), 3245-3260. https://doi.org/10.1016/S0043-1354(98)00099-2
  45. Tiraferri, A. and Elimelech, M. (2012), "Direct quantification of negatively charged functional groups on membrane surfaces", J. Membr. Sci., 389, 499-508. https://doi.org/10.1016/j.memsci.2011.11.018
  46. Tiwari, D., Lalhriatpuia, C., Lee, S.M. and Kong, S.H. (2015), "Efficient application of nano-TiO 2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions", Appl. Surf. Sci., 353, 275-283. https://doi.org/10.1016/j.apsusc.2015.06.131
  47. Ulbricht, M. (2006), "Advanced functional polymer membranes", Polymer, 47(7), 2217-2262. https://doi.org/10.1016/j.polymer.2006.01.084
  48. Van der Bruggen, B., Manttari, M. and Nystrom, M. (2008), "Drawbacks of applying nanofiltration and how to avoid them: A review", Sep. Purif. Technol., 63(2), 251-263. https://doi.org/10.1016/j.seppur.2008.05.010
  49. Verissimo, S., Peinemann, K.V. and Bordado, J. (2005), "Thinfilm composite hollow fiber membranes: An optimized manufacturing method", J. Membr. Sci., 264(1), 48-55. https://doi.org/10.1016/j.memsci.2005.04.020
  50. Verliefde, A.R., Cornelissen, E., Heijman, S., Verberk, J., Amy, G., Van der Bruggen, B. and Van Dijk, J. (2008), "The role of electrostatic interactions on the rejection of organic solutes in aqueous solutions with nanofiltration", J. Membr. Sci., 322(1), 52-66. https://doi.org/10.1016/j.memsci.2008.05.022
  51. Verliefde, A.R., Cornelissen, E.R., Heijman, S., Petrinic, I., Luxbacher, T., Amy, G., Van der Bruggen, B. and Van Dijk, J. (2009), "Influence of membrane fouling by (pretreated) surface water on rejection of pharmaceutically active compounds (PhACs) by nanofiltration membranes", J. Membr. Sci., 330(1), 90-103. https://doi.org/10.1016/j.memsci.2008.12.039
  52. Wang, Z., Yu, H., Xia, J., Zhang, F., Li, F., Xia, Y. and Li, Y. (2012), "Novel GO-blended PVDF ultrafiltration membranes", Desalination, 299, 50-54. https://doi.org/10.1016/j.desal.2012.05.015
  53. Widjojo, N., Chung, T.S., Weber, M., Maletzko, C. and Warzelhan, V. (2011), "The role of sulphonated polymer and macrovoid-free structure in the support layer for thin-film composite (TFC) forward osmosis (FO) membranes", J. Membr. Sci., 383(1), 214-223. https://doi.org/10.1016/j.memsci.2011.08.041
  54. Xia, S. and Ni, M. (2015), "Preparation of poly (vinylidene fluoride) membranes with graphene oxide addition for natural organic matter removal", J. Membr. Sci., 473, 54-62. https://doi.org/10.1016/j.memsci.2014.09.018
  55. Xia, S., Yao, L., Zhao, Y., Li, N. and Zheng, Y. (2015), "Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal", Chem. Eng. J., 280, 720-727. https://doi.org/10.1016/j.cej.2015.06.063
  56. Xu, P., Bellona, C. and Drewes, J.E. (2010), "Fouling of nanofiltration and reverse osmosis membranes during municipal wastewater reclamation: Membrane autopsy results from pilotscale investigations", J. Membr. Sci., 353(1), 111-121. https://doi.org/10.1016/j.memsci.2010.02.037
  57. Yeh, T.M., Wang, Z., Mahajan, D., Hsiao, B.S. and Chu, B. (2013), "High flux ethanol dehydration using nanofibrous membranes containing graphene oxide barrier layers", J. Mater. Chem. A., 1(41), 12998-13003. https://doi.org/10.1039/c3ta12480k
  58. Yoon, Y., Westerhoff, P., Snyder, S.A., Wert, E.C. and Yoon, J. (2007), "Removal of endocrine disrupting compounds and pharmaceuticals by nanofiltration and ultrafiltration membranes" Desalination, 202(1), 16-23. https://doi.org/10.1016/j.desal.2005.12.033
  59. Zazouli, M.A., Susanto, H., Nasseri, S. and Ulbricht, M. (2009), "Influences of solution chemistry and polymeric natural organic matter on the removal of aquatic pharmaceutical residuals by nanofiltration", Water Res., 43(13), 3270-3280. https://doi.org/10.1016/j.watres.2009.04.038
  60. Zinadini, S., Zinatizadeh, A.A., Rahimi, M., Vatanpour, V. and Zangeneh, H. (2014), "Preparation of a novel antifouling mixed matrix PES membrane by embedding graphene oxide nanoplates", J. Membr. Sci., 453, 292-301. https://doi.org/10.1016/j.memsci.2013.10.070

Cited by

  1. Preparation of Cross-Linked Graphene Oxide on Polyethersulfone Membrane for Pharmaceuticals and Personal Care Products Removal vol.12, pp.9, 2018, https://doi.org/10.3390/polym12091921