• Title/Summary/Keyword: fluorine-doped tin oxide

Search Result 70, Processing Time 0.029 seconds

Fabrication of Uniform TiO2 Blocking Layers for Prevention of Electron Recombination in Dye-Sensitized Solar Cells (염료감응형 태양전지의 전자재결합 방지를 위한 균일한 TiO2 차단층의 제조)

  • Bae, Ju-won;Koo, Bon-Ryul;Lee, Tae-Kuen;Ahn, Hyo-Jin
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2018
  • Uniform $TiO_2$ blocking layers (BLs) are fabricated using ultrasonic spray pyrolysis deposition (USPD) method. To improve the photovoltaic performance of dye-sensitized solar cells (DSSCs), the BL thickness is controlled by using USPD times of 0, 20, 60, and 100 min, creating $TiO_2$ BLs of 0, 40, 70, and 100 nm, respectively, in average thickness on fluorine-doped tin oxide (FTO) glass. Compared to the other samples, the DSSC containing the uniform $TiO_2$ BL of 70 nm in thickness shows a superior power conversion efficiency of $7.58{\pm}0.20%$ because of the suppression of electron recombination by the effect of the optimized thickness. The performance improvement is mainly attributed to the increased open-circuit voltage ($0.77{\pm}0.02V$) achieved by the increased Fermi energy levels of the working electrodes and the improved short-circuit current density ($15.67{\pm}0.43mA/cm^2$) by efficient electron transfer pathways. Therefore, optimized $TiO_2$ BLs fabricated by USPD may allow performance improvements in DSSCs.

The Effect of a Sol-gel Formed TiO2 Blocking Layer on the Efficiency of Dye-sensitized Solar Cells

  • Cho, Tae-Yeon;Yoon, Soon-Gil;Sekhon, S.S.;Kang, Man-Gu;Han, Chi-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3629-3633
    • /
    • 2011
  • The effect of a dense $TiO_2$ blocking layer prepared using the sol-gel method on the performance of dye-sensitized solar cells was studied. The blocking layer formed directly on the working electrode, separated it from the electrolyte, and prevented the back transfer of electrons from the electrode to the electrolyte. The dyesensitized solar cells were prepared with a working electrode of fluorine-doped tin oxide glass coated with a blocking layer of dense $TiO_2$, a dye-attached mesoporous $TiO_2$ film, and a nano-gel electrolyte, and a counter electrode of Pt-deposited FTO glass. The gel processing conditions and heat treatment temperature for blocking layer formation affected the morphology and performance of the cells, and their optimal values were determined. The introduction of the blocking layer increased the conversion efficiency of the cell by 7.37% for the cell without a blocking layer to 8.55% for the cell with a dense $TiO_2$ blocking layer, under standard illumination conditions. The short-circuit current density ($J_{sc}$) and open-circuit voltage ($V_{oc}$) also were increased by the addition of a dense $TiO_2$ blocking layer.

Fabrication and (Photo)Electrochemical Properties of Fe2O3/Na2Ti6O13/FTO Films for Water Splitting Process (물분해용 Fe2O3/Na2Ti6O13/FTO 박막 제조 및 특성평가)

  • Yun, Kang-Seop;Ku, Hye-Kyung;Kang, Woo-Seung;Kim, Sun-Jae
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.65-69
    • /
    • 2012
  • One dimensional(1D) $Na_2Ti_6O_{13}$ nanorods with 70 nm in diameter was synthesized by a molten salt method. Using the synthesized nanorods, about 750 nm thick $Na_2Ti_6O_{13}$ film was coated on Fluorine-doped tin oxide(FTO) glasss substrate by the Layer-by-layer self-assembly(LBL-SA) method in which a repetitive self-assembling of ions containing an opposite electric charge in an aqueous solution was utilized. Using the Kubelka-Munk function, the band gap energy of the 1D-$Na_2Ti_6O_{13}$ nanorods was nalyzed to be 3.5 eV. On the other hand, the band gap energy of the $Na_2Ti_6O_{13}$ film coated on FTO was found to be a reduced value of 2.9 eV, resulting from the nano-scale and high porosity of the film processed by LBL-SA method, which was favorable for the photo absorption capability. A significant improvement of photocurrent and onset voltage was observed with the $Na_2Ti_6O_{13}$ film incorporated into the conventional $Fe_2O_3$ photoelectrode: the photocurrent increased from 0.25 to 0.82 mA/$cm^2$, the onset voltage decreased from 0.95 to 0.78 V.

Additional Study on the Laser Sealing of Dye-Sensitized Solar-Cell-Panels Using V2O5 and TeO2 Containing Glass

  • Cho, Sung-Jin;Lee, Kyoungho
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.2
    • /
    • pp.103-107
    • /
    • 2015
  • The effective glass frit composition used to absorb laser energy and to seal commercial dye-sensitized solar cell panel substrates has been previously developed using $V_2O_5-TeO_2$-based glass with 10 wt% ${\beta}$-eucryptite as a CTE controlling filler. The optimum sealing conditions are provided using a 3 mm beam, a laser power of 40 watt, a scan speed of 300 mm/s, and 200 irradiation cycles. In this study, the feasibility of the developed glass frit is investigated in terms of the sealing strength and chemical durability against the commercial iodide/triiodide electrolyte solution and fluorine-doped tin oxide (FTO) electrode in order to increase the solar cell lifetime. The sealing strength of the laser-sealed $V_2O_5-TeO_2$-based glass frit is $20.5{\pm}1.7MPa$, which is higher than those of thermally sealed glass frit and other reported glass frit. Furthermore, the developed glass frit is chemically stable against electrolyte solutions. The glass frit constituents are not leached out from the glass after soaking in the electrolyte solution for up to three months. During the laser sealing, the glass frit does not react with the FTO electrode; thus, the resistivity of the FTO electrode beneath the laser-sealed area remains the same.

A Study on FTO-less Dye Sensitized Solar Cell with Ti Deposited Glass (티타늄이 증착된 유리를 사용한 FTO-less 염료감응형 태양전지에 관한 연구)

  • Park, Songyi;Seo, Hyunwoong;Son, Min-Kyu;Kim, Soo-Kyoung;Hong, Na-Yeong;Song, Jeong-Yun;Prabakar, Kandasamy;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.208-212
    • /
    • 2013
  • Dye-sensitized solar cells (DSCs) have taken much attention due to their low cost and easy fabrication method compare to silicon solar cells. But research on cost effective DSC is prerequisite for commercialization. Fluorine doped tin oxide (FTO) which have been commonly used for electrode substrate as electron collector occupied most percentage of manufacturing cost. Therefore we studied FTO-less DSC using sputtered Ti deposited glass as photoelectrode instead of FTO to reduce manufacturing cost. Ti films sputtered on the glass for different time, 5 to 20 minutes with decreasing sheet resistance as deposition time increases. A light source illuminated to counter electrode in order to overcome opaque Ti films. The efficiency of DSC (Ti20) made Ti sputtered glass for 20 min as photoelectrode was 5.87%. There are no significant difference with conventional cell despite lower manufacturing cost.

Preparation of Ultra-Thin Transparent TiO2 Coated Film by Ink-Jet Printing Method (잉크젯 프린팅을 이용한 초박막 투명 TiO2 코팅층 제조)

  • Yoon, Cho-Rong;Oh, Hyo-Jin;Lee, Nam-Hee;Guo, Yupeng;Lee, Won-Jae;Park, Kyeong-Soon;Kim, Sun-Jae
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.4
    • /
    • pp.190-196
    • /
    • 2007
  • Dye sensitized solar cells(DSSC) are the most promising future energy resource due to their high energy efficiency, low production cost, and simple manufacturing process. But one problem in DSSC is short life time compared to silicon solar cells. This problem occurred from photocatalytic degradation of dye material by nanometer sized $TiO_2$ particles. To prevent dye degradation as well as to increase its life time, the transparent coating film is needed for UV blocking. In this study, we synthesized nanometer sized $TiO_2$ particles in sols by increasing its internal pressure up to 200 bar in autoclave at $120^{\circ}C$ for 10 hrs. The synthesized $TiO_2$ sols were all formed with brookite phase and their particle size was several nm to 30 nm. Synthesized $TiO_2$ sols were coated on the backside of fluorine doped tin oxide(FTO) glass by ink jet printing method. With increasing coating thickness by repeated ink jet coating, the absorbance of UV region (under 400 nm) also increases reasonably. Decomposition test of titania powders dispersed in 0.1 mM amaranth solution covered with $TiO_2$ coating glass shows more stable dye properties under UV irradiation, compared to that with as-received FTO glass.

Photovoltaic Efficiency Characteristics of DSSC with Electroplated Pt/Ni Counter Electrode (백금/니켈 전기 도금 상대전극을 사용한 염료 감응형 태양전지 광전 변환 효율 특성)

  • Hwang, Ki Seob;Doh, Seok Joo;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • We prepared a counter electrode by electroplating Ni as underlayer and Pt as plating layer on the FTO glass to increase the efficiency of dye-sensitized solar cell (DSSC). We found an excellent adhesion between Ni underlayer and FTO glass when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min on FTO glass. We observed Ni and Pt metal diffraction peaks by XRD analysis when Ni underlayer was electroplated at $10mA/cm^2$ for 2 min, and Pt layer was electroplated at $5mA/cm^2$ for 1 min on the Ni underlayer. Photovoltaic performance and impedance analysis of DSSCs fabricated with this counter electrode shows the highest efficiency of 5.6% and the lowest resistance of 75 ohm.

Minimization of Recombination Losses in 3D Nanostructured TiO2 Coated with Few Layered g-C3N4 for Extended Photo-response

  • Kang, Suhee;Pawar, Rajendra C.;Park, Tae Joon;Kim, Jin Geum;Ahn, Sung-Hoon;Lee, Caroline Sunyong
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.393-399
    • /
    • 2016
  • We have successfully fabricated 3D (3-dimensional) nanostructures of $TiO_2$ coated with a $g-C_3N_4$ layer via hydrothermal and sintering methods to enhance photoelectrochemical (PEC) performance. Due to the coupling of $TiO_2$ and $g-C_3N_4$, the nanostructures exhibited good performance as the higher conduction band of $g-C_3N_4$, which can be combined with $TiO_2$. To fabricate 3D nanostructures of $g-C_3N_4/TiO_2$, $TiO_2$ was first grown as a double layer structure on FTO (Fluorine-doped tin oxide) substrate at $150^{\circ}C$ for 3 h. After this, the $g-C_3N_4$ layer was coated on the $TiO_2$ film at $520^{\circ}C$ for 4 h. As-prepared samples were varied according to loading of melamine powder, with values of loading of 0.25 g, 0.5 g, 0.75 g, and 1 g. From SEM and TEM analysis, it was possible to clearly observe the 3D sample morphologies. From the PEC measurement, 0.5 g of $g-C_3N_4/TiO_2$ film was found to exhibit the highest current density of $0.12mA/cm^2$, along with a long-term stability of 5 h. Compared to the pristine $TiO_2$, and to the 0.25 g, 0.75 g, and 1 g $g-C_3N_4/TiO_2$ films, the 0.5 g of $g-C_3N_4/TiO_2$ sample was coated with a thin $g-C_3N_4$ layer that caused separation of the electrons and the holes; this led to a decreasing recombination. This unique structure can be used in photoelectrochemical applications.

Solution Processed Porous Fe2O3 Thin Films for Solar-Driven Water Splitting

  • Suryawanshi, Mahesh P.;Kim, Seonghyeop;Ghorpade, Uma V.;Suryawanshi, Umesh P.;Jang, Jun Sung;Gang, Myeng Gil;Kim, Jin Hyeok;Moon, Jong Ha
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.631-635
    • /
    • 2017
  • We report facile solution processing of mesoporous hematite (${\alpha}-Fe_2O_3$) thin films for high efficiency solar-driven water splitting. $Fe_2O_3$ thin films were prepared on fluorine doped tin oxide(FTO) conducting substrates by spin coating of a precursor solution followed by annealing at $550^{\circ}C$ for 30 min. in air ambient. Specifically, the precursor solution was prepared by dissolving non-toxic $FeCl_3$ as an Fe source in highly versatile dimethyl sulfoxide(DMSO) as a solvent. The as-deposited and annealed thin films were characterized for their morphological, structural and optical properties using field-emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS) and UV-Vis absorption spectroscopy. The photoelectrochemical performance of the precursor (${\alpha}-FeOOH$) and annealed (${\alpha}-Fe_2O_3$) films were characterized and it was found that the ${\alpha}-Fe_2O_3$ film exhibited an increased photocurrent density of ${\sim}0.78mA/cm^2$ at 1.23 V vs. RHE, which is about 3.4 times higher than that of the ${\alpha}-FeOOH$ films ($0.23mA/cm^2$ at 1.23 V vs. RHE). The improved performance can be attributed to the improved crystallinity and porosity of ${\alpha}-Fe_2O_3$ thin films after annealing treatment at higher temperatures. Detailed electrical characterization was further carried out to elucidate the enhanced PEC performance of ${\alpha}-Fe_2O_3$ thin films.

Hydrothermally Synthesis Nanostructure ZnO Thin Film for Photocatalysis Application (수열합성법으로 합성된 산화아연 나노 구조 박막의 광촉매적 응용)

  • Shinde, N.M.;Nam, Min Sik;Patil, U.M.;Jun, Seong Chan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.97-101
    • /
    • 2016
  • ZnO has nanostructured material because of unique properties suitable for various applications. Amongst all chemical and physics methods of synthesis of ZnO nanostructure, the hydrothermal method is attractive for its simplicity and environment friendly condition. Nanostructure ZnO thin films have been successfully synthesized on fluorine doped tin oxide (FTO) substrate using hydrothermal method. A possible growth mechanism of the various nanostructures ZnO is discussed in schematics. The prepared materials were characterized by standard analytical techniques, i.e., X-ray diffraction (XRD) and Field-emission scanning electron microscopy (SEM). The XRD study showed that the obtained ZnO nanostructure thin films are in crystalline nature with hexagonal wurtzite phase. The SEM image shows substrate surface covered with nanostructure ZnO nanrod. The UV-vis absorption spectrum of the synthesized nanostructure ZnO shows a strong excitonic absorption band at 365 nm which indicate formation nanostructure ZnO thin film. Photoluminescence spectra illustrated two emission peaks, with the first one at 424 nm due to the band edge emission of ZnO and the second broad peak centered around 500 nm possibly due to oxygen vacancies in nanostructure ZnO. The Raman measurements peaks observed at $325cm^{-1}$, $418cm^{-1}$, $518cm^{-1}$ and $584cm^{-1}$ indicated that nanostrusture ZnO thin film is high crystalline quality. We trust that nanostructure ZnO material can be effectively will be used as a highly active and stable phtocatalysis application.