• Title/Summary/Keyword: fluorine passivation

Search Result 15, Processing Time 0.031 seconds

In-Situ Fluorine Passivation by Excimer Laser Annealing

  • Jung, Sang-Hoon;Kim, Cheon-Hong;Jeon, Jae-Hong;Yoo, Juhn-Suk;Han, Min-Koo
    • Journal of Information Display
    • /
    • v.1 no.1
    • /
    • pp.25-28
    • /
    • 2000
  • We propose a new in-situ fluorine passivation of poly-Si TFTs using excimer laser annealing to reduce the trap state density and improve reliability significantly. To investigate the effect of an in-situ fluorine passivation, we have fabricated fluorine-passivated p-channel poly-Si TFTs and examined their electrical characteristics and stability. A new in-situ fluorine passivation brought about an improvement in electrical characteristic. Such improvement is due to the formation of stronger Si-F bonds than Si-H bonds in poly-Si channel and $SiO_2$/Poly-Si interface.

  • PDF

Passivation Effects of Excimer-Laser-Induced Fluorine using $SiO_{x}F_{y}$ Pad Layer on Electrical Characteristics and Stability of Poly-Si TFTs ($SiO_{x}F_{y}$/a-Si 구조에 엑시머 레이저 조사에 의해 불소화된 다결정 실리콘 박막 트랜지스터의 전기적 특성과 신뢰도 향상)

  • Kim, Cheon-Hong;Jeon, Jae-Hong;Yu, Jun-Seok;Han, Min-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.623-627
    • /
    • 1999
  • We report a new in-situ fluorine passivation method without in implantation by employing excimer laser annealing of $SiO_{x}F_{y}$/a-Si structure and its effects on p-channel poly-Si TFTs. The proposed method doesn't require any additional annealing step and is a low temperature process because fluorine passivation is simultaneous with excimer-laser-induced crystallization. A in-situ fluorine passivation by the proposed method was verified form XPS analysis and conductivity measurement. From experimental results, it has been shown that the proposed method is effective to improve the electrical characteristics, specially field-effect mobility, and the electrical stability of p-channel poly-Si TFTs. The improvement id due to fluorine passivation, which reduces the trap state density and forms the strong Si-F bonds in poly-Si channel and $SiO_2/poly-Si$ interface. From these results, the high performance poly-Si TFTs canbe obtained by employing the excimer-laser-induced fluorine passivation method.

  • PDF

The formation of the passivation layer by the flourine layer by the fluorine treatment after Al(Cu 1%) plasma etching (Al(Cu 1%) 플라트마 식각후 fluorine 처리에 의한 passivation 막 형성)

  • 김창일;최광호;김상기;백규하;윤용선;남기수;장의구
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.27-33
    • /
    • 1998
  • In this study, chlorine(Cl)-based gas chemistry is generally used to etching for AlCu films metallization.The corrosion phenomena of AlCu films were examined with XPS (X-ray photoelectron spectroscopy), SEM 9Scanning electron microscopy), and TEM (Transmission electron microscopy). SF$_{6}$ plasma treatment sulbsequent to the etching process preventas the corrosion effectively in the pressure of 300 mTorr. It is found that the cholrine atoms on the etched surface are not substituted for fluorine atoms during SF$_{6}$ treatment, but a passivation layer on the surface by fluorine-related compounds would be formed. The passivation layer prevents the moisture penetration on the SF$_{6}$ treated surface and suppresses the corrsion sucessfully.fully.

  • PDF

The Effects of Fluorine Passivation on $SF_6$ Treatment for Anti-corrosion after Al(Cu 1%) Plasma Etching (Al(Cu 1%)막의 플라즈마 식각후 부식 억제를 위한 $SF_6$ 처리시 fluorine passivation 효과)

  • 김창일;권광호;백규하;윤용선;김상기;남기수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.3
    • /
    • pp.203-207
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, the $SF_6$ plasma treatment subsequent to the etch has been carried out. A passivation layer is formed by fluorine-related compounds on etched Al-Cu alloy surface after $SF_6$ treatment, and the layer suppresses effectively the corrosion on the surface as the RF power of $SF_6$ treatment increases. The corrosion could be suppressed successfully with $SF_6$ treatment in the RF power of 150watts.

  • PDF

In-situ Fluorine Passivation by Excimer Laser Annealing

  • Jung, Sang-Hoon;Kim, Cheon-Hong;Jeon, Jae-Hong;Yoo, Juhn-Suk;Han, Min-Koo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.155-156
    • /
    • 2000
  • We propose a new in-situ fluorine passivation of poly-Si TFTs by excimer laser annealing to reduce the trap density and improve the reliability significantly. This improvement is due to the formation of stronger Si-F bonds than Si-H bonds which passivate the trap states.

  • PDF

Corrosion at the Grain Boundary and a Fluorine-Related Passivation Layer on Etched Al-Cu (1%) Alloy Surfaces

  • Baek, Kyu-Ha;Yoon, Yong-Sun;Park, Jong-Moon;Kwon, Kwang-Ho;Kim, Chang-Il;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.21 no.3
    • /
    • pp.16-21
    • /
    • 1999
  • After etching Al-Cu alloy films using SiCl4/Cl_2/He/CHF3 mixed gas plasma, the corrosion phenomenon at the grain boundary of the etched surface and a passivation layer on the etched surface with an SF6 plasma treatment subsequent to the etching were studied. In Al-Cu alloy system, corrosion occurs rapidly on the etched surface by residual chlorine atoms, and it occurs dominantly at the grain boundaries rather than the crystalline surfaces. To prevent corrosion, the SF6 gas plasma treatment subsequent to etching was carried out. The passivation layer is composed of fluorine-related compounds on the etched Al-Cu surface after the SF6 treatment, and it suppresses effectively corrosion on the surface as the SF6 treatment pressure increases. Corrosion could be suppressed successfully with the SF6 treatment at a total pressure of 300 mTorr. To investigate the reason why corrosion could be suppressed with the SF6 treatment, behaviors of chlorine and fluorine were studied by various analysis techniques. It was also found that the residual chlorine incorporated at the grain boundary of the etched surface accelerated corrosion and could not be removed after the SF6 plasma treatment.

  • PDF

Effects of anti-corrosion of the Al alloy film by the post-etch treatment (플라즈마 식각후 처리에 의한 Al alloy막의 부식 억제 효과)

  • 김환준;이철인;최현식;권광호;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.413-417
    • /
    • 1997
  • In this study, chlorine(Cl)-based gas chemistry is generally used to etching for AlCu films metallization. The corrosion phenomena of AlCu films were examined with XPS (X-ray photoelectron spectroscopy), SEM (Scanning electron microscopy), and TEM (Transmission electron microscopy). SF$\sub$6/ plasma treatment subsequent to the etch process prevents the corrosion effectively in the pressure of 300 mTorr. It is found that the chlorine atoms on the etched surface are not substituted for fluorine atoms during SF$\sub$6/ treatment, but a passivation layer on the surface by fluorine-related compounds would be formed. The passivation layer prevents the moisture penetration on the SF$\sub$6/ treated surface and suppresses the corrosion successfully.

  • PDF

A study of the fluorine treatment for the anti-corrosion after plasma etching of AlCu films (AlCu 배선의 부식방지를 위한 fluorine 가스 처리연구)

  • 김창일;서용진;권광호;김태형;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.383-386
    • /
    • 1998
  • After etching Al-Cu alloy films using SiC1$_4$/Cl$_2$/He/CHF$_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS (X-ray photoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, CHF$_3$ plasma treatment subsequent to the etched has been carried out. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after CHF$_3$ and SF$_{6}$ treatment, and the layer supresses effectively the corrosion on the surface as the CHF$_3$ and SF$_{6}$ treatment pressure increases. The corrosion could be suppressed successfully with CHF$_3$ and SF6 treatment in the pressure of 300mTorr.orr.

  • PDF

The Effect of the Anti-corrosion by$CHF_3$ Treatment after Plasma Etching of Al Alloy Films (Al 합금막의 식각후 $CHF_3$ 처리에 의한 부식억제 효과)

  • 김창일;권광호;윤용선;백규하;남기수;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.7
    • /
    • pp.517-521
    • /
    • 1998
  • After etching Al-Cu alloy films using $SiCl_4/Cl_2/He/CHF_3$ plasma, a corrosion phenomenon on the metal surface has been studied with XPS(X-ray pheotoelectron spectroscopy) and SEM (Scanning electron microscopy). In Al-Cu alloy system, the corrosion occurs rapidly on the etched surface by residual chlorine atoms. To prevent the corrosion, $CHF_3$ plasma treatment subsequent to the etch has been carried put. A passivation layer is formed by fluorine-related compounds on the etched Al-Cu surface after $CHF_3$ treatment, and the layer suppresses effectively the corrosion on the surface as the $CHF_3$treatment in the pressure of 300m Torr.

  • PDF

Enhancement of PLED lifetime using thin film passivation with amorphous Mg-Zn-F

  • Kang, Byoung-Ho;Kim, Do-Eok;Kim, Jae-Hyun;Seo, Jun-Seon;Kim, Hak-Rin;Lee, Hyeong-Rag;Kwon, Dae-Hyuk;Kang, Shin-Won
    • Journal of Information Display
    • /
    • v.11 no.1
    • /
    • pp.8-11
    • /
    • 2010
  • In this study, a new thin films passivation technique using Zn with high electronegativity and $MgF_2$, a fluorine material with better optical transmittance than the sealing film materials that have thus far been reported was proposed. Targets with various ratios of $MgF_2$ to Zn (5:5, 4:6 and 3:7) were fabricated to control the amount of Zn in the passivation films. The Mg-Zn-F films were deposited onto the substrates and Zn was located in the gap between the lattices of $MgF_2$ without chemical metathesis in the Mg-Zn-F films. The thickness and optical transmittance of the deposited passivation films were approximately 200 nm and 80%, respectively. It was confirmed via electron dispersive spectroscopy (EDS) analysis that the Zn content of the film that was sputtered using a 4:6 ratio target was 9.84 wt%. The Zn contents of the films made from the 5:5 and 3:7 ratio targets were 2.07 and 5.01 wt%, respectively. The water vapor transmission rate (WVTR) was determined to be $38^{\circ}C$, RH 90-100%. The WVTR of the Mg-Zn-F film that was deposited with a 4:6 ratio target nearly reached the limit of the equipment, $1\times10^{-3}\;gm^2{\cdot}day$. As the Zn portion increased, the packing density also increased, and it was found that the passivation films effectively prevented the permeation by either oxygen or water vapor. To measure the characteristics of gas barrier, the film was applied to the emitting device to evaluate their lifetime. The lifetime of the applied device with passivation was increased to 25 times that of the PLED device, which was non-passivated.