In-situ Fluorine Passivation by Excimer Laser Annealing

Sang-Hoon Jung, Cheon-Hong Kim, Jae-Hong Jeon, Juhn-Suk Yoo and Min-Koo Han School of Electrical Engineering, Seoul National University, Seoul, Korea

Abstract

We propose a new *in-situ* fluorine passivation of poly-Si TFTs by excimer laser annealing to reduce the trap density and improve the reliability significantly. This improvement is due to the formation of stronger Si-F bonds than Si-H bonds which passivate the trap states.

Introduction

Poly-Si TFTs (polycrystalline silicon thin film transistors) has attraced a considerable attention for AMLCDs (active matrix liquid crystal displays). However, It is well known that considerable defects in poly-Si active layer degrade the electrical property of poly-Si TFTs[1].

The hydrogen passivatoin is widely used to passivate the grain boundaries and the intra-grain defect. but the long-term stability of hydrogenated poly-Si TFTs should be improved because the weak Si-H bonds may not be stable under the electrical stress [2,3].

Recently, it has been reported that the fluorine ion implantation on poly-Si layer as well as hydrogenation is an effective method to reduce the trap state density [4,5]. Furthermore, it was reported that the fluorine implantation also improves the electrical stability of poly-Si TFTs due to the rather strong Si-F bond formation in poly-Si channel and SiO₂/poly-Si interface [5]. However, ion implantation has troublesome problems in large-area electronics and high-temperature annealing is also required to activate implanted fluorine atoms and cure implant damages [4,5].

The purpose of this work is to report a new *in-situ* fluorine passivation method without ion implantation and an additional annealing step by low-temperature process with ELA (excimer laser annealing). We have fabricated fluorine-passivated p-channel poly-Si TFTs and examined their electrical characteristics and stability. Our experiments show that the proposed method is effective to improve the electrical characteristics and the stability of poly-Si TFTs.

Experiments

The *in-situ* fluorine passivation method proposed in this study is illustrated in the inserted figure of Fig. 1 When a-Si (amorphous silicon) film is irradiated with excimer laser, we use fluorine-doped silicon oxide (SiO_xF_y) as a capping oxide. During the laser irradiation, the SiO_xF_y film may be a diffusion source of fluorine atoms. While a-Si melt crystallized, fluorine atoms may diffuse and passivate trap states. As a result, a-Si film may be transformed to fluorine-passivated poly-Si film.

To investigate the proposed fluorine passivation effects on poly-Si TFTs, we have fabricated p-channel poly-Si TFTs. After defining 800 Å-thick a-Si active islands, the 200 Å-thick $\text{SiO}_x F_y$ film was deposited on a-Si film by PECVD at $390^{\circ}C$ using TEOS (tetraethoxysilane), O_2 and C_2F_6 gas [6]. For comparison, the SiO_2 film of the same thickness was also deposited by the same method without only C_2F_6 gas. XeCl excimer laser (λ =308nm) with the laser energy density of 250mJ/cm^2 was irradiated on $\text{SiO}_xF_y/\text{a-Si}$ and $\text{SiO}_2/\text{a-Si}$ structure, respectively.

After removing oxides, Mg Ka X-ray photoelectron spectroscopy (XPS) analysis was performed to investigate the

surface composition of poly-Si films. Poly-Si resistors $(W/L=500\mu m/90\mu m)$ were also fabricated on some samples.

Then, the 1000 Å-thick gate TEOS-oxide and the 2000 Å-thick Molybdenum layer for gate electrodes were deposited by PECVD and by sputtering, respectively. After defining gate patterns, B_2H_6 ion shower doping was performed to form source and drain electrodes. The dopants were activated at $400^{\circ}C$ for 2 hours in N_2 ambient. The devices were covered with 5000 Å-thick oxide and contact holes were opened. After deposition and patterning of Al layer, the devices are sintered at $450^{\circ}C$ for 30 minutes in N_2 ambient.

Fig. 1 The XPS data of the poly-Si films crystallized by laser irradiation on SiOxFy/a-Si and SiO2/a-Si structure, respectively. The inserted figure depicts the schematic cross section of the proposed fluorine passivation method.

Results and Discussion

Fig. 1 shows the XPS data of two samples. The peak in the binding energy of 686eV of the poly-Si film crystallized by laser irradiation on SiO_xF_y/a-Si structure indicates that fluorine atoms are incorporated in it.

The conductivity of the poly-Si film was improved from $2.07\times10^{-6}\Omega^{-l}cm^{-l}$ to $1.16\times10^{-5}\Omega^{-l}cm^{-l}$ due to fluorine incorporation. This result and XPS data indicate that trap states in poly-Si film have been successfully passivated by fluorine atoms.

Fig. 2 The typical transfer characteristics of devices with and without *in-situ* fluorine passivation before and after hydrogenation.

Table 1 The device parameters of devices without and with various passivations

Parameters		V _r (V)	S (V/dec)	μ (cm²/V·s)	N_{i} $(10^{II}$ $cm^{-2})$
before hydrog	w/o F passivation	- 11.4	1.41	8.5	1.42
enation	With F passivation	-9.5	1.19	17.5	1.30
after hydrog	w/o F passivation	-8.3	1.01	15.3	1.26
	With F	22	0.02	20.0	1 12

-7.2

passivation

0.92

29.0

1.13

Fig. 2 shows the typical transfer characteristics of devices with and without *in-situ* fluorine passivation at V_D =-10V before and after hydrogenation. The subthreshold and the on-state characteristics of device with *in-situ* fluorine passivation were improved significantly. The threshold voltage(V_T) and the subthreshold swing (S) for devices with *in-situ* fluorine passivation were improved from -11.4V and 1.41V/dec to -9.5V and 1.19V/dec, respectively. However, the off-state leakage current was almost unchanged. These results are consistent with the fluorine implantation cases[4,5].

Finally, the electrical reliability of device with and without *insitu* fluorine passivation after hydrogen passivation was investigated. Fig. 3(a) shows the threshold voltage shift $(-\Delta V_T)$ and the trap state densitiy (ΔN_t) for typical devices as a function of stress time after devices were stressed at V_D =-25V and V_G =-25V. The subthreshold swing shift(ΔS) and the driving current degradation $(-\Delta I_s/I_s)$ are also shown in Fig. 3(b). The driving current(I_s) was evaluated at V_D =-20V. It is observed that the degradation rate of all device parameters was remarkably decreased for the *in-situ* fluorine passivation device.

The degradation trend of threshold voltage(V_T) and trap state density (N_t) are similar as shown in Fig. 3(a) because the threshold voltage shift is closely related to the increase of the trap state density. The degradation of poly-Si TFTs under the electrical stress is probably due to breaking of the weak Si-H bonds by mobile carriers, which results in the increase of the trap state density[2]. Our experimental data indicate that the improvement of reliability

is due to the rather strong Si-F bond formation in place of the weak Si-H bond in poly-Si channel and SiO₂/poly-Si interface.

Fig. 3 (a) The threshold voltage(V_T) and theincrese of the trap state denstity(ΔN_t). (b) The subthreshold swing shift (ΔS) and the driving current degradation ($-\Delta I_s/I_s$) of devices as a function of stress time after devices were stressed at V_D =-25V and V_G =-25V.

Conclusion

We report a new *in-situ* fluorine passivation method without ion implantation and an additional annealing step by low-temperature process with ELA and its effects on poly-Si TFTs. It has been shown that the proposed method is effective to improve the electrical characteristics, specially field-effect mobility, and the relibility of p-channel poly-Si TFTs. The improvement is due to fluorine passivation, which reduces the trap state density and forms the strong Si-F bonds in poly-Si channel and SiO₂/poly-Si interface. From these results, we conclude that the high performance poly-Si TFTs can be obtained by employing the *in-situ* fluorine passivation method with ELA.

Reference

- 1) T. I. Kamins and P.J. Marcoux: IEEE Electron Device Lett. EDL-1, p. 159, 1980.
- 2) I. W. Wu, W. B. Jackson, T. Y. Huang, A. G. Lewis and A. Ciang: IEEE Electron Device Lett. **EDL-11**, p.167(1990).
- 3) I. W. Wu, T. Y. Huang, W. B. Jackson, A. G. Lewis and A. Ciang: IEEE Electron Device Lett. **EDL-12**, p.181(1991).
- 4) J. W. Park, B. T. Ahn and K.Lee: Jpn. J. Appl. Phys. 34 (1995) 1436
- 5) H. N. Chern, C. L. Lee and T. F. Lei: IEEE Trans. Electron Devices **ED-41** (1994) 698.
- 6) T. Usami, K. Shimokawa and M. Yosimaru: Jpn. J. Appl. Phys. 33 (1994) 408.

enation