• 제목/요약/키워드: fluorescent peptide

검색결과 46건 처리시간 0.024초

Eastern Staining: A Simple Recombinant Protein Detection Technology Using a Small Peptide Tag and Its Counter Partner Which is a Fluorescent Compound

  • Lee, Jae-Jung;Kim, Jun-Young;Zhai, Duanting;Yun, Seong-Wook;Chang, Young-Tae
    • Interdisciplinary Bio Central
    • /
    • 제4권2호
    • /
    • pp.5.1-5.9
    • /
    • 2012
  • Small peptide tags such as c-myc, HA, or FLAG tag have facilitated efficient Western-blotting of proteins of interest especially when specific antibodies for the proteins are not available. However, the conventional Western-blotting requires the multi-steps process taking at least several hours up to two days. With examples of various applications, here we show a convenient and time-saving method for protein detection which employs a fluorescent chemical BDED and its binding peptide RC-tag. And we propose "Estern staining", as a standard term for protein detection method using fluorescent chemicals and their binding small peptide tags. Eastern staining may substitutes for the time-consuming "immuno-staining" in many versatile applications.

Formation of Quantum Dot Fluorescent Monolayer Film using Peptide Bond

  • Inami, Watau;Nanbu, Koichi;Miyakawa, Atsuo;Kawata, Yoshimasa
    • 정보저장시스템학회논문집
    • /
    • 제8권1호
    • /
    • pp.1-5
    • /
    • 2012
  • We present a method for preparing a quantum dot fluorescent monolayer film on a glass substrate. Since nanoparticles aggregate easily, it is difficult to prepare a nanoparticle monolayer film. We have used a covalent bond, the peptide bond, to fix quantum dots on the glass substrate. The surface of the quantum dot was functionalized with carboxyl groups, and the glass substrate was also functionalized with amino groups using a silane coupling agent. The carboxyl group can be strongly coupled to the amino group. We were able to successfully prepare a monolayer film of CdSe quantum dots on the glass substrate.

형광펩타이드를 이용한 Oligosaccharyltransferase Assay 방법 연구 (Comparison of Oligosaccharyltransferase Assay Methods Using a Fluorescent Peptide)

  • 김성훈
    • 미생물학회지
    • /
    • 제46권1호
    • /
    • pp.96-103
    • /
    • 2010
  • 단백질의 N-글리코실화는 대표적인 번역 후 변형 중의 하나로 진핵생물 뿐 아니라 원핵생물에서도 발견된다. N-글리코실화는 단백질 상의 N-글리코실 서열인 N-x-S/T 위치에 지질과 연결된 올리고당(lipid-linked oligosaccharide, LLO)으로부터 올리고당 전이효소(oligosaccharyltransferase, OTase) 활성에 의해 글리칸(glycan)이 전달되어 당단백질의 합성이 이루어진다. 본 연구에서는 OTase의 세포내 활성을 측정하기 위하여 5/6-carboxyltetramethylrhodamine (TAMRA)이 도입된 형광펩타이드 TAMRA-DA$\underline{N}$Y$\underline{T}$K-$NH_2$를 이용하였다. OTase활성 측정은 단일 서브유닛으로 효소의 활성을 갖는 운동핵 편모충류인 Leishmania major Stt3p와 병원성 미생물인 Campylobacter jejuni PglB를 진핵생물과 원핵생물의 모델 효소로 각각 사용하여 Saccharomyces cerevisiae와 C. jejuni 유래 LLO와 형광 펩타이드를 반응시켜 당-펩타이드를 합성하였다. 합성된 당-펩타이드를 미반응한 형광펩타이드와 분리 및 당-펩타이드의 정량 분석을 위하여 Tricine SDS-PAGE, ConA 렉틴 컬럼 및 fluorospectrophotometer, HPLC를 사용하였으며, 당-펩타이드 분석을 통해 각 방법의 장단점을 비교하였다. 비교 분석 결과 Tricine SDS-PAGE를 이용한 형광 이미지 분석과, 렉틴 컬럼을 통해 분리된 당-펩타이드의 fluorospectrophotometer 정량법에 비해, HPLC를 이용한 방법이 OTase에 의해 생성된 당-펩타이드를 분석하는데 더 정확하고 정량적인 값을 제시하는 것으로 확인되었다.

Stromelysin-1에 의한 펩타이드 가수분해에서 pH와 기질특이성 연구 (Distinctive pH Dependence and Substrate Specificity of Peptide Hydrolysis by Human Stromelysin-1)

  • 차재호
    • 생명과학회지
    • /
    • 제10권2호
    • /
    • pp.210-217
    • /
    • 2000
  • A kinetic profile of the catalytic domain of stromelysin-1 (SCD) using the fluorescent peptide substrate has been determined by the stopped-flow technique. The pH profile has a pH optimum of about 5.5 with an extended shoulder above pH 7. Three pKa values, 5.0, 5.7, and 9.8 are found for the free enzyme state and two pH independent Kcat/Km values of 4.1$\times$104 M-1 s-1 and 1.4$\times$104 M-1 s-1 at low and high pH, respectively. The profile is quite different in shape with other MMP family which has been reported, having broad pH optimum with two pKa values. The substrate specificity of SCD towards fluorescent heptapeptide substrates has been also examined by thin layer chromatography. The cleavage sites of the substrates have been identified using reverse-phase HPLC method.SCD cleaves Dns-PLA↓L↓WAR and Dns-PLA↓L↓FAR at two positions. However, the Dns-PLA↓LRAR, Dns-PLE↓LFAR, adn Dns-PLSar↓LFAR are cleaved exclusively at one bond. The double cleavages of Dns-PLALWAR and Dns-PLALFAR by SCD are in marked contrast to the close structurally related matrilysin. A notable feature of SCD catalysis agrees with the structural data that the S1' pocket of SCD is deeper than that of matriysin. The differences observed between SCD and matrilysin may form the basis of understanding the structural relationships and substrate specificities of the MMP family in vivo.

  • PDF

Identification of a Functionally Relevant Signal Peptide of Mouse Ficolin A

  • Kwon, Sang-Hoon;Kim, Min-Soo;Kim, Dong-Bum;Lee, Keun-Wook;Choi, Soo-Young;Park, Jin-Seu;Kim, Yeon-Hyang;Lee, Young-Hee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • 제40권4호
    • /
    • pp.532-538
    • /
    • 2007
  • Mouse ficolin A is a plasma protein with lectin activity, and plays a role in host defense by binding carbohydrates, especially GlcNAc, on microorganisms. The ficolin A subunit consists of an N-terminal signal peptide, a collagen-like domain, and a C-terminal fibrinogen-like domain. In this study, we show that ficolin A can be synthesized and oligomerized in a cell and secreted into culture medium. We also identify a functionally relevant signal peptide of ficolin A by using MS/MS analysis to determine the N-terminal sequence of secreted ficolin A. When the signal peptide of mouse ficolin A was fused with enhanced green fluorescent protein (EGFP), EGFP was released into HEK 293 cell medium, suggesting that the signal peptide can efficiently direct ficolin A secretion. Moreover, our results suggest that the signal peptide of ficolin A has potential application for the production of useful secretory proteins.

Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation

  • Kim, Joung-Min;Joshi, Bishnu Prasad;Lee, Keun-Hyeung
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2537-2541
    • /
    • 2010
  • We chose a fluorescent pentapeptide sensor (-CPGHE) containing a dansyl fluorophore as a model peptide and investigated whether the selectivity and sensitivity of the peptides for heavy and transition metal ions could be tuned by changing amino acid sequence. In this process, we developed a selective peptide sensor, Cp1-d (-HHPGE, $K_d\;=\;670\;nM$) for detection of $Zn^{2+}$ in 100% aqueous solution and a selective and sensitive peptide sensor, Cp1-e (-CCHPGE, $K_d\;=\;24\;nM$) for detection of $Cd^{2+}$ in 100% aqueous solution. Overall results indicate that the selectivity and sensitivity of the metallopeptide sensors to specific heavy and transition metal ions can be tuned by changing amino acid sequence.

Ro 09-0198의 독성발현 기전에 관한 연구 (TOXIC MECHANISM OF Ro09-0198 ISOLATED FROM STREPTOVERTICILLIUM)

  • 정세영
    • Toxicological Research
    • /
    • 제6권1호
    • /
    • pp.109-119
    • /
    • 1990
  • Ro09-0198, a cyclic peptide isolated from culture filtrates of Streptoverticillium griseoverticillatum, induced lysis of erythrocytes. Ro-09-0198-induced hemolysis was temperature-dependent and the sensitivity of hemolysis differed greatly among animal species. Preincubation of the peptide with phosphatidylethanolamine reduced the hemolytic activity, whereas other phospholipids present in erythrocytes in nature had no effect. A study of the structural requirements on phosphatidylethanolamine necessary for interaction with the peptide indicates that Ro09-0198 recognizes strictly a particular chemical structure of phosphatidylethanolamine: dialkylphosphoethanolamine as well as 1-acylglycerophosphoethanolamine showed the same inhibitory effct on hemolysis induced by Ro09-0198 as diacylphosphatidyl-ethanolamine, whereas phosphoethanolamine gave no inhibitory effect. Neither phosphatidyl-N-monomethylethanolamine nor alkylphosphopropanolamine had an inhibitory effect. Proton resonances of the peptide were observed in dimethyl sulfoxide solution in the presence of 1-dodecanoyl-sn-glycerophosphoethanolamine. This peptide caused permeability increase and aggregation of liposomes containing phosphatidylethanolamine. A glycerol backbone and a primary amino group of phosphatidylethanolamine are necessary for interaction with Ro09-0198 to cause membrane damage. Ro09-0198 induced a selective permeability change on liposomes. Glucose and umbelliferyl phosphate were effluxed significantly, but sucrose was only slightly permeable and inulin could not be released. Platelet aggregation and serotonin release simultaneously induced by Ro09-0198. Addition of peptide to rat platelet, loaded with the fluorescent $Ca^{++}$ chelator quin-2, caused immediate rise in cytosolic free $Ca^{++}$ to liposomal membrane containing phosphatidylethanolamine was observed dose dependently.

  • PDF

Biochemical Application of IgG Fc-Binding Peptide: From Biochip to Targeted Nano Carrier

  • Chung, Sang J.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.110-111
    • /
    • 2013
  • FcBP consisting of 13 amino acids specifically binds to Immunoglobulin G Fc domain. Initially, we utilized this peptide for preparation of antibody chip as a PEG composite for enhanced solubility. After then, the peptide conjugate was immobilized on agarose resin, resulting in highly efficient affinity column for antibody purification. The efficiency was comparable to commercial Protein A column. Recently, this peptide was conjugated with cell penetrating peptide (CPP) on a backbone of GFP, affording antibody transducer, which carries antibody into live cells by simple mixing of antibody and the transducer in cell culture media. Antibody transduction into cells was monitored by live cell imaging. More recently, the FcBP was fused to ferritin cage, which consists of 24 ferritin protein molecules. The FcBP-ferritin cage showed greatly increased binding affinity to human IgG. Its binding was analyzed by QCM and SPR analysis. Finally, it was selectively delivered by Herceptin to SKBR3, a breast cancer cell, over MCF10A, non-tumorigenic cells (Fig. 1). Fig. 1. Fluorescent microscopic images of SKBR3 breast cancer cells (A~C) and MCF10A breast cells (D~F) treated with Cy3-trastuzumab/fFcBP-Pf_Fn complexes. Trastuzumab and FcBP-Pf_Fn, which were labeled with Cy3 (Cy3-trastuzumab) and fluorescein (fFcBP-Pf_Fn), respectively, selectively targeted SKBR3 over MCF10A.

  • PDF

Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles

  • Lee, Myung Kyu
    • Applied Science and Convergence Technology
    • /
    • 제24권6호
    • /
    • pp.284-288
    • /
    • 2015
  • Anionic small molecules are hard to penetrate the cell membranes because of their negative charges. Encapsulation of small molecules into liposome particles can provide target specific delivery of them. In our previous study, siRNA could be efficiently encapsulated into liposome particles using an asymmetric preparation method of liposomes. In this study, the same method was applied for encapsulation of small anionic fluorescent chemicals such as calcein and indocyanine green (ICG). More than 90% fluorescent chemicals were encapsulated in the asymmetric liposome particles (ALPs). No intracellular fluorescent signal was observed in the tumor cells treated with the unmodified calcein/ALPs and ICG/ALPs, whereas the surface modification with a cell-penetrating polyarginine peptide (R8 or R12) allows cellular uptake of the ALPs. The results demonstrate that the ALPs encapsulating small anionic drugs will be useful for target-specific delivery after modification of target-specific ligands.

Rapid and Accurate Detection of Bacillus anthracis Spores Using Peptide-Quantum Dot Conjugates

  • Park, Tae-Jung;Park, Jong-Pil;Seo, Gwi-Moon;Chai, Young-Gyu;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1713-1719
    • /
    • 2006
  • A method for the simple, rapid, specific, and accurate detection of Bacillus anthracis spores was developed by employing specific capture peptides conjugated with fluorescent quantum dots (QDs). It was possible to distinguish B. anthracis spores from the spores of B. thuringiensis and B. cereus using these peptide-QD conjugates by flow cytometric and confocal laser scanning microscopic analyses. For more convenient high-throughput detection of B. anthracis spores, spectrofluorometric analysis of spore-peptide-QD conjugates was performed. B. anthracis spores could be detected in less than 1 h using this method. In order to avoid any minor yet false-positive signal caused by the presence of B. thuringiensis spores, the B-Negative peptide, which can only bind to B. thuringiensis, conjugated with another type of QD that fluoresces at different wavelength was also developed. In the presence of mixed B. anthracis and B. thuringiensis spores, the BABA peptide conjugated with QD525 and the B-Negative peptide conjugated with QD585 were able to bind to the former and the latter, specifically and respectively, thus allowing the clear detection of B. anthracis spores against B. thuringiensis spores by using two QD-labeling systems. This capture peptide-conjugated QD system should be useful for the detection of B. anthracis spores.