DOI QR코드

DOI QR Code

Highly Efficient Encapsulation of Anionic Small Molecules in Asymmetric Liposome Particles

  • Lee, Myung Kyu (Bionanotechnology Research Center, KRIBB, and Department of Nanobiotechnology, University of Science and Technology)
  • Received : 2015.10.22
  • Accepted : 2015.11.03
  • Published : 2015.11.30

Abstract

Anionic small molecules are hard to penetrate the cell membranes because of their negative charges. Encapsulation of small molecules into liposome particles can provide target specific delivery of them. In our previous study, siRNA could be efficiently encapsulated into liposome particles using an asymmetric preparation method of liposomes. In this study, the same method was applied for encapsulation of small anionic fluorescent chemicals such as calcein and indocyanine green (ICG). More than 90% fluorescent chemicals were encapsulated in the asymmetric liposome particles (ALPs). No intracellular fluorescent signal was observed in the tumor cells treated with the unmodified calcein/ALPs and ICG/ALPs, whereas the surface modification with a cell-penetrating polyarginine peptide (R8 or R12) allows cellular uptake of the ALPs. The results demonstrate that the ALPs encapsulating small anionic drugs will be useful for target-specific delivery after modification of target-specific ligands.

Keywords

References

  1. X. Xu, M. A. Khan and D. J. Burgess, Int. J. Pharmceut. 423, 543 (2012). https://doi.org/10.1016/j.ijpharm.2011.11.036
  2. T. M. Allen and P. R. Cullis, Adv. Drug. Deliv. Rev. 65, 36 (2013). https://doi.org/10.1016/j.addr.2012.09.037
  3. J. Rautio, H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen, Nature Rev. Drug Discov. 7, 255 (2008). https://doi.org/10.1038/nrd2468
  4. G. J. Charrois and T. M. Allen, Biochim. Biophys. Acta 1663, 167 (2004). https://doi.org/10.1016/j.bbamem.2004.03.006
  5. H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, T, J. Control. Release 65, 271 (2000). https://doi.org/10.1016/S0168-3659(99)00248-5
  6. Y. Barenholz, J. Control. Release 160, 117 (2012). https://doi.org/10.1016/j.jconrel.2012.03.020
  7. J. O. Eloy, M. Claro de Souza, R. Petrilli, J. P. Barcellos, R. J. Lee, and J. M. Marchetti, Colloids Surf. B Biointerfaces 123, 345 (2014). https://doi.org/10.1016/j.colsurfb.2014.09.029
  8. F. Szoka, Jr. and D. Papahadjopoulos, Proc. Nat. Acad. Sci. USA 75 4194 (1978). https://doi.org/10.1073/pnas.75.9.4194
  9. R. Cortesi, E. Esposito, S. Gambarin, P. Telloli, E. Menegatti, and C. Nastruzzi, J. Microencapsul. 16, 251 (1999). https://doi.org/10.1080/026520499289220
  10. L. D. Mayer, M. J. Hope, P. R. Cullis, and A. S. Janoff, Biochim. Biophys. Acta 817, 193 (1985). https://doi.org/10.1016/0005-2736(85)90084-7
  11. A. A. Mokhtarieh, S. Cheong, S. Kim, B. H. Chung, and M. K. Lee, Biochim. Biophys. Acta 1818, 1633 (2012). https://doi.org/10.1016/j.bbamem.2012.03.016
  12. B. Yuan, N. Chen and Q. Zhu, J. Biomed. Opt. 9, 497 (2004). https://doi.org/10.1117/1.1695411
  13. J. Gao, W. Liu, Y. Xia, W. Li, J. Sun, H. Chen, B. Li, D. Zhang, W. Qian, Y. Meng, L. Deng, H. Wang, J. Chen, and Y. Guo, Biomaterials 32, 3459 (2011). https://doi.org/10.1016/j.biomaterials.2011.01.034
  14. C. Zhang, N. Tang, X. Liu, W. Liang, W. Xu, and V. P. Torchilin, J. Control. Release 112, 229 (2006). https://doi.org/10.1016/j.jconrel.2006.01.022
  15. S. M. Fuchs and R. T. Raines, Biochemistry 43, 2438 (2004). https://doi.org/10.1021/bi035933x