DOI QR코드

DOI QR Code

Design and Synthesis of Metallopeptide Sensors: Tuning Selectivity with Ligand Variation

  • Kim, Joung-Min (Bioorganic Chemistry Lab, Department of Chemistry, Inha University) ;
  • Joshi, Bishnu Prasad (Bioorganic Chemistry Lab, Department of Chemistry, Inha University) ;
  • Lee, Keun-Hyeung (Bioorganic Chemistry Lab, Department of Chemistry, Inha University)
  • Received : 2010.07.06
  • Accepted : 2010.07.19
  • Published : 2010.09.20

Abstract

We chose a fluorescent pentapeptide sensor (-CPGHE) containing a dansyl fluorophore as a model peptide and investigated whether the selectivity and sensitivity of the peptides for heavy and transition metal ions could be tuned by changing amino acid sequence. In this process, we developed a selective peptide sensor, Cp1-d (-HHPGE, $K_d\;=\;670\;nM$) for detection of $Zn^{2+}$ in 100% aqueous solution and a selective and sensitive peptide sensor, Cp1-e (-CCHPGE, $K_d\;=\;24\;nM$) for detection of $Cd^{2+}$ in 100% aqueous solution. Overall results indicate that the selectivity and sensitivity of the metallopeptide sensors to specific heavy and transition metal ions can be tuned by changing amino acid sequence.

Keywords

References

  1. Bode, W.; Gomis-Ruth, F. X.; Stockler, W. FEBS Lett. 1993, 331, 134. https://doi.org/10.1016/0014-5793(93)80312-I
  2. Vallee, B. L.; Auld, D. S. Biochemistry 1990, 29, 5647. https://doi.org/10.1021/bi00476a001
  3. Hay, M.; Richards, J. H.; Lu, Y. Proc. Natl. Acad. Sci. USA 1996, 93, 461. https://doi.org/10.1073/pnas.93.1.461
  4. Blindauer, C. A.; Sadler, P. J. Acc. Chem. Res. 2005, 38, 62. https://doi.org/10.1021/ar030182c
  5. Lipscomb, W. N.; Strater, N. Chem. Rev. 1996, 96, 2375. https://doi.org/10.1021/cr950042j
  6. Eren, E.; Gonzalez-Guerrero.; Kaufman, B. M.; Arguello, J. M. Biochemistry 2007, 46, 7754. https://doi.org/10.1021/bi7001345
  7. Banci, L.; Bertini, I.; Ciofi-Baffoni, S.; Finney, L. A.; Outten, C. E.; O’Halloran, T. V. J. Mol. Biol. 2002, 323, 883. https://doi.org/10.1016/S0022-2836(02)01007-0
  8. Liu, J.; Stemmler, A. J.; Fatima, J.; Mitra, B. Biochemistry 2005, 44, 5159. https://doi.org/10.1021/bi0476275
  9. Joshi, B. P.; Cho, W. M.; Kim, J.; Yoon, J.; Lee, K. H. Bioorg. Med. Chem. Lett. 2007, 23, 6425.
  10. Joshi, B. P.; Lee, K. H. Bioorg. Med. Chem. 2008, 16, 8501. https://doi.org/10.1016/j.bmc.2008.08.022
  11. Joshi, B. P.; Park, J. W.; Lee, W. I.; Lee, K. H. Talanta 2009, 78, 903. https://doi.org/10.1016/j.talanta.2008.12.062
  12. Fisk, J. D.; Gellman, S. H. J. Am. Chem. Soc. 2001, 123, 343. https://doi.org/10.1021/ja002493d
  13. Haque, T. S.; Gellman, S. H. J. Am. Chem. Soc. 1997, 119, 2303. https://doi.org/10.1021/ja963653h
  14. Wang, Z.; Lee, J. H.; Lu, Y. Chem. Commun. 2008, 6005.
  15. Li, H.; Li, Y.; Dang, Y.; Ma, L.; Wu, Y.; Hou, G.; Wu, L. Chem. Commun. 2009, 4453.
  16. White, B. R.; Liljestrand, H. M.; Holcombe, J. A. Analyst 2008, 133, 65. https://doi.org/10.1039/b711777a
  17. Leray, I.; Lefevre, J.; Delouis, J.; Delaire, J.; Valeur, B. Chem. Eur. J. 2001, 7, 4590. https://doi.org/10.1002/1521-3765(20011105)7:21<4590::AID-CHEM4590>3.0.CO;2-A
  18. Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka M.; Vogtle, F. Chem. Commun. 2000, 853.
  19. Vogtle, F.; Gestermann, S.; Kauffmann, C.; Ceroni, P.; Vicinelli, V.; Balzani, V. J. Am. Chem. Soc. 2000, 122, 10398. https://doi.org/10.1021/ja993745h
  20. Deo, S.; Godwin, H. A. J. Am. Chem. Soc. 2000, 122, 174. https://doi.org/10.1021/ja992238x
  21. Aoki, S.; Kawatani, H.; Goto, T.; Kimura, E.; Shiro, M. J. Am. Chem. Soc. 2001, 123, 1123. https://doi.org/10.1021/ja0033786
  22. Haugland, R. P. Molecular Probes, 6th ed.; Eugene: OR, 1996.
  23. Kavallieratos, K.; Rosenberg, J. M.; Chen, W.; Ren, T. J. Am. Chem. Soc. 2005, 127, 6514. https://doi.org/10.1021/ja050296e
  24. Zheng, Y.; Gattas-Asfura, K. M.; Konka, V.; Leblanc, R. M. Chem. Commun. 2002, 2350.
  25. Metivier, R.; Leray, I.; Valeur, B. Photochem. Photobiol. Sci. 2004, 3, 374. https://doi.org/10.1039/b314674j
  26. Metivier, R.; Leray I.; Valeur, B. Chem. Eur. J. 2004, 10, 4480. https://doi.org/10.1002/chem.200400259
  27. Fields, G. B.; Nobel, R. L. Int. J. Pept. Protein Res. 1990, 35, 161. https://doi.org/10.1111/j.1399-3011.1990.tb00939.x
  28. Kimura, E.; Koike, T. Chem. Soc. Rev. 1998, 27, 179. https://doi.org/10.1039/a827179z
  29. Walkup, G. K.; Imperiali, B. J. Am. Chem. Soc. 1996, 118, 3053. https://doi.org/10.1021/ja9538501
  30. Harford C.; Sarkar, B. Acc. Chem. Res. 1997, 30, 123. https://doi.org/10.1021/ar9501535
  31. Varnes, A. V.; Dodson, R. B.; Whery, E. L. J. Am. Chem. Soc. 1972, 94, 946-950. https://doi.org/10.1021/ja00758a037
  32. Mu, H.; Gong, Rui.; Ma, Q.; Sun, Y.; Fu, E. Tetrahedron Lett. 2007, 48, 5525-5529. https://doi.org/10.1016/j.tetlet.2007.05.155
  33. Goswami, S.; Chakraborty, R. Tetrahedron Lett. 2009, 50, 2911-2914. https://doi.org/10.1016/j.tetlet.2009.03.200
  34. Falchuk, K. H. Mol. Cell. Biochem. 1998, 188, 41. https://doi.org/10.1023/A:1006808119862
  35. Zalewski, P. D.; Forbes, I. J.; Betts, W. H. Biochem. J. 1993, 296, 403.
  36. Maret, W.; Jacob, C.; Vallee, B. L.; Fischer, E. H. Proc. Natl. Acad. Sci. USA 1999, 96, 1936. https://doi.org/10.1073/pnas.96.5.1936
  37. Bush, A. I.; Pattingel, W. H.; Multhaup, G.; Paradis, M. D.; Vonsattel, J. P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464. https://doi.org/10.1126/science.8073293
  38. Ajayaghosh, A.; Carol, P.; Sreejith, S. J. Am. Chem. Soc. 2004, 127, 14962 https://doi.org/10.1021/ja054149s
  39. Frederickson, C. J.; Bush, A. I. Biometals 2001, 14, 353. https://doi.org/10.1023/A:1012934207456
  40. Nolan, E. M.; Jaworski, J.; Okamoto, K.; Hayashi, Y.; Sheng, M.; Lippard, S. J. J. Am. Chem. Soc. 2005, 127,16812. https://doi.org/10.1021/ja052184t
  41. Hanaoka, K.; Kikuchi, K.; Kojima, H.; Urano, Y.; Nagano, T. J. Am. Chem. Soc. 2004, 126, 12470. https://doi.org/10.1021/ja0469333
  42. Xu, Z.; Baek, K.-H.; Kim, H. N.; Cui, J.; Qian, X.; Spring, D. R.; Shin, I.; Yoon, J. J. Am. Chem. Soc. 2010, 132, 601. https://doi.org/10.1021/ja907334j
  43. Chen, X.; Zhou, W. Y.; Peng, W. X.; Yoon, J. Chem. Soc. Rev. 2010, 39, 1996. https://doi.org/10.1039/b916287a
  44. Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Kluwer Academic Plenum: New York, 1999.
  45. Likussar, W.; Boltz, D. F. Anal. Chem. 1971, 43, 1265. https://doi.org/10.1021/ac60304a006
  46. Reddi, A. R.; Guzman, T. R.; Breece, R. M.; Tierney, D. L.; Gibney, B. R. J. Am. Chem. Soc. 2007, 129, 12815. https://doi.org/10.1021/ja073902+

Cited by

  1. ) vol.4, pp.43, 2016, https://doi.org/10.1039/C6TB00671J
  2. Cd(II) Capture Ability of an Immobilized, Fluorescent Hexapeptide vol.89, pp.2, 2016, https://doi.org/10.1246/bcsj.20150333
  3. Synthesis of a heptapeptide and its application in the detection of mercury(II) ion vol.33, pp.2, 2017, https://doi.org/10.1007/s40242-017-6362-0
  4. Functionalization of gold nanoparticles using guanidine thiocyanate for sensitive and selective visual detection of Cd2+ vol.334, pp.None, 2010, https://doi.org/10.1016/j.snb.2021.129685