• Title/Summary/Keyword: fluid-solid element

Search Result 91, Processing Time 0.028 seconds

Toward the computational rheometry of filled polymeric fluids

  • Hwang, Wook-Ryol;Hulsen Martien A.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.171-181
    • /
    • 2006
  • We present a short review for authors' previous work on direct numerical simulations for inertialess hard particle suspensions formulated either with a Newtonian fluid or with viscoelastic polymeric fluids to understand the microstructural evolution and the bulk material behavior. We employ two well-defined bi-periodic domain concepts such that a single cell problem with a small number of particles may represent a large number of repeated structures: one is the sliding bi-periodic frame for simple shear flow and the other is the extensional bi-periodic frame for planar elongational flow. For implicit treatment of hydrodynamic interaction between particle and fluid, we use the finite-element/fictitious-domain method similar to the distributed Lagrangian multiplier (DLM) method together with the rigid ring description. The bi-periodic boundary conditions can be effectively incorportated as constraint equations and implemented by Lagrangian multipliers. The bulk stress can be evaluated by simple boundary integrals of stresslets on the particle boundary in such formulations. Some 2-D example results are presented to show effects of the solid fraction and the particle configuration on the shear and elongational viscosity along with the micro-structural evolution for both particles and fluid. Effects of the fluid elasticity has been also presented.

Heat Transfer Analysis of a Linear Motor for Chip Mounter Applications (칩 마운터용 리니어 모터의 열전달 해석)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon;Oh, Jung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.396-401
    • /
    • 2001
  • Heat transfer analysis of a iron core type linear motor for surface mounting device applications was considered in this study. In order to avoid the complex conjugate problem a fluid flow regime and a solid regime were considered separately. First, film coefficients of the moving parts were evaluated from computational fluid dynamic analysis and those of the stationary parts from the existing empirical or analytic correlations. And then, by applying them, internal and external temperatures of the linear motor pal1s were computed through finite element analysis. Both computation and measurement were carried out with respect to motor driving power. The measurement did not exhibit a linear temperature variation trend with respect to motor power while the computation revealed a linear correlation. Nonetheless, the computations agreed with the measurements within an error range of 20%. It indicates that an adequate heat transfer model for the reciprocative coil assembly may help more exact prediction.

  • PDF

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Shin, S.J;Lee, T.S;Oh, S.I
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.111-120
    • /
    • 1998
  • This paper is the first one of two-parted research efforts focusing on the modeling of rubber pad forming process. The rubber pad, driven by the pressurized fluid during the forming process, pushes the sheet metal to solid tool half and forms a part to final shape. In this part of the paper, a numerical procedure for the FE analysis of the rubber pad deformation is presented. The developed three-dimensional FE model is based on the total Lagrangian description of rubber maerial characterized by nearly incompressible hyper-elastic behavior under a large deformation assumption. Validity of the model as well as effects of different algorithms corresponding to incompresibility constraints and time integration methods on numerical solution responses are also demonstrated.

Finite Element Analysis for Behavior of Porous Media Using the S-ALE Method (S-ALE를 이용한 다공질 매체 거동의 유한요소해석)

  • Park Tae-Hyo;Tak Moon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.381-388
    • /
    • 2006
  • A porous medium is composed of solids, fluids, and gas which have different physical and chemical properties. In addition, these constituents have a relative velocity between each other. So far, in order to analyze porous media using finite element method, Lagrangian or Eulerian method has been used. However, the numerical analyses for porous media have a defect that the methods do not describe the movements of constituents. In this paper, numerical analysis for unsaturated porous media was performed in frame of ALE method which has advantages of Lagrangian and Eulerian. Namely, the Lagrangian description was used in solid phase, and the Eulerian description was used in fluid or gas phase in a porous medium Then the relationship between each other was controlled by the convective term in ALE method. Finally, the numerical results of ALE were compared with tile results of Lagrangian analysis.

  • PDF

Dynamic analysis of Pine Flat dam-reservoir system utilizing Hagstrom-Warburton truncation boundary condition

  • Solmaz Dehghanmarvasty;Vahid Lotfi
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.365-389
    • /
    • 2023
  • Dynamic analysis of a typical concrete gravity dam-reservoir system is formulated by FE-(FE-TE) approach (i.e., Finite Element-(Finite Element-Truncation Element)). In this technique, dam and reservoir are discretized by plane solid and fluid finite elements. Moreover, the H-W (i.e., Hagstrom-Warburton) high-order condition imposed at the reservoir truncation boundary. This task is formulated by employing a truncation element at that boundary. It is emphasized that reservoir far-field is excluded from the discretized model. The formulation is initially reviewed which was originally proposed in a previous study. Thereafter, the response of Pine Flat dam-reservoir system is studied due to horizontal and vertical ground motions for two types of reservoir bottom conditions of full reflective and absorptive. It should be emphasized that study is carried out under high order of H-W condition applied on the truncation boundary. The initial part of study is focused on the time harmonic analysis. In this part, it is possible to compare the transfer functions against corresponding responses obtained by FE-(FE-HE) approach (referred to as exact method). Subsequently, the transient analysis is carried out. In that part, it is only possible to compare the results for low and high normalized reservoir length cases. Therefore, the sensitivity of results is controlled due to normalized reservoir length values.

Numerical Study on Fine Migration in Geo-materials (지반내 세립토 유동에 대한 수치해석적 연구)

  • Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.33-41
    • /
    • 2018
  • Soil internal erosion is a phenomenon in which fines attached to the solid skeleton are detached by fluid flow, and this continuous fine migration weakens the hydro-mechanical characteristics of the ground structure. This paper proposed governing equations for fine migration in pore spaces and its related scheme for the numerical analysis. Phase diagram for fine particles includes three different states: detached fines in the liquid phase ($c_e$), attached fines in the solid phase (${\sigma}_a$), and pore-clogged fines in the solid phase (${\sigma}_s$). Numerical formulations for finite element method are developed based on the hydraulic governing equations of pore fluid and fine migration. This study proposed a method of estimating model parameters for fine detachment, attachment, and clogging from 1D erosion experiments. And it proposed an analytical formula for hydraulic permeability function considering fine clogging. Numerical analysis of the previous erosion test developed the numerical scheme and verified the adequacy of fine migration models.

Effect of Bifurcation Angle on Blood Flow in Flexible Carotid Artery (유연한 경동맥 분지관에서 분지각이 혈액의 유동에 미치는 영향에 관한 연구)

  • Lee, Sang Hoon;Choi, Hyoung Gwon;Yoo, Jung Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.229-235
    • /
    • 2013
  • To investigate the effect of the flexible artery wall on the blood flow, three-dimensional numerical simulations were carried out for analyzing the time-dependent incompressible flows of Newtonian fluids constrained by a flexible wall. The Navier-Stokes equations for fluid flow were solved using the P2P1 Galerkin finite element method, and mesh movement was achieved using an arbitrary Lagrangian-Eulerian formulation. The Newmark method was employed for solving the dynamic equilibrium equations for the deformation of a linear elastic solid. To avoid complexity due to the necessity of additional mechanical constraints, we used a combined formulation that includes both the fluid and structure equations of motion to produce a single coupled variational equation. The results showed that the flexibility of the carotid wall significantly affects flow phenomena during the pulse cycle. The flow field was also found to be strongly influenced by the bifurcation angle.

Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media (유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법)

  • Koo, Jeong Hoi;Hong, Soon Jo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.109-122
    • /
    • 1993
  • ln this paper, a finite element analysis procedure is proposed for the incremental multi-step excavations in a fluid-saturated porous medium such as saturated soil ground. As the basis of derivation, Biot's equation was used. The proposed procedure was applied to some one- and two-dimensional problems under incremental excavations. Unsaturated cases as well as saturated cases were considered for comparison. Through numerical tests, the effects of permeability and excavation speed on the deformation history was investigated. Results showed that pore pressure built up during incremental excavation has a significant effect on the deformation and stresses of solid skeleton and validated the use of the present procedure for the analysis of multi-step excavations in fluid-saturated media such as in saturated shallow ground.

  • PDF

Rigid-Plastic Finite Element Analysis of Axisymmetric Forward Extrusion (강소성 유한요소법 을 이용한 축대칭 전방 압출 해석)

  • 양동열;오병수;이중홍
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.4
    • /
    • pp.452-462
    • /
    • 1985
  • The axisymmetric forward extrusion is analyzed by using the rigid-plastic finite element formulation. The distribution of stresses and strains as well as the deformation pattern in solid extrusion is very important for the improvement of product quality. The initial velocity field is determined by assuming the material as a Newtonian fluid through an arbitrarily shaped axisymmetric die. The workhardening effect and the friction of the die-material interface are considered in the formulation. Some reduction of area and die shapes(conical and biquadratic-curved) are chosen for computation. Experiments are carried out for steel alloy(SCM4) specimens using conical and curved dies. It is found that experimental observation is in good agreement with FEM results. The strain distribution is curved(biquadratic) dies is shown to be more uniform than in conical dies at the same reduction of area.