• Title/Summary/Keyword: fluid output

Search Result 340, Processing Time 0.028 seconds

The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance (브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측)

  • 박용호;김기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

SIMULATION OF EXPERIMENTAL VISUALIZATION METHODS FOR COMPUTATIONAL FLUID DYNAMICS RESEARCH

  • TAMURA Y.;FUJII K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.04a
    • /
    • pp.44-68
    • /
    • 1995
  • In the present paper, visualization techniques in fluid dynamic experiments such as Schlieren photograph are numerically simulated so that the same output as the experimental flow visualization can be obtained from the computed results for the fair comparison. Numerical methods to simulate optical visualizations, that are Schlieren photograph, shadowgraph and interferogram, are considered. Some examples of pictures obtained by the present methods show the importance of the simulations of visualization techniques for the correct comparisons of the computations and experiments.

  • PDF

An Experimental Study on Power Transmission Characteristics Flow Rate in Fluid Couplings (유체커플링에서 유량과 동력전달특성에 관한 실험적 연구)

  • Pak, Yong-Ho;Moon, Dong-Cheol;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 1995
  • The fluid coupling combined with a pump and a turbine have many merits compared with other couplings, their uses are increesing rapidly in various industrial fields at home and abroad in pursuit of high-speed more efficiency durability of various mechanic devices. The authorities concerned have recognized the improtance of the fluid coupling and supported its developement and now some trial products began to show up. As the structrue and characteristics of the fluid coupling have little similarity to other kinds of couplings and its fluid behavior is unique, so its characteristic analysis is expected to be difficult. Until now no satisfactory study on the characteristics of the fluid coupling seems to have been conducted at home, so a study on this field needs to be done urgently. The purpose of this research is to construct the experimental test set-ups and establish a series of performance test program for the domestically developed fluid couplings and to provide a software to store and utilize these experimental data which can be used to improve the performance of the fluid coupling and solve on the job problems confronted in operation. The performance test consists of taking measurment of torque, rpm and efficiency of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft and finally infestigating the torque, rpm and efficiency characteristics of the fluid coupling with respect to these parameters. The results of this study can contribute valuable references to the development of variable speed fluid coupling and torque converter currently pursued by the domestic industry.

  • PDF

Study of a Durability Test for Single-input Multi-output Power Take-off Gearboxes (단일입력 다출력 PTO 기어박스의 내구성시험에 관한 연구)

  • Lee, Yong Bum;Yoo, Han Ju
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This study analyzed a life test method for a power take-off (PTO) gearbox. An engine transfers mechanical power (rotation and torque) to a hydraulic pump through a PTO Gearbox with one input shaft and three output shafts. PTO gear box durability under high loads over long time periods was tested using dynamometers. In order to reflect the rated operating conditions, power must be distributed to each output shaft, and experiments were conducted under various conditions to verify the characteristics of the distributed power. An accelerated life test was designed using speed and torque as acceleration factors. Also, efficiency tests were conducted under various load conditions. Also, a lubrication oil composition analysis was performed to analyze gearbox wear status.

A preliminary simulation for the development of an implantable pulsatile blood pump

  • Di Paolo, Jose;Insfran, Jordan F.;Fries, Exequiel R.;Campana, Diego M.;Berli, Marcelo E.;Ubal, Sebastian
    • Advances in biomechanics and applications
    • /
    • v.1 no.2
    • /
    • pp.127-141
    • /
    • 2014
  • A preliminary study of a new pulsatile pump that will work to a frequency greater than 1 Hz, is presented. The fluid-structure interaction between a Newtonian blood flow and a piston drive that moves with periodic speed is simulated. The mechanism is of double effect and has four valves, two at the input flow and two at the output flow; the valves are simulated with specified velocity of closing and reopening. The simulation is made with finite elements software named COMSOL Multiphysics 3.3 to resolve the flow in a preliminary planar configuration. The geometry is 2D to determine areas of high speeds and high shear stresses that can cause hemolysis and platelet aggregation. The opening and closing valves are modelled by solid structure interacting with flow, the rhythmic opening and closing are synchronized with the piston harmonic movement. The boundary conditions at the input and output areas are only normal traction with reference pressure. On the other hand, the fluid structure interactions are manifested due to the non-slip boundary conditions over the piston moving surfaces, moving valve contours and fix pump walls. The non-physiologic frequency pulsatile pump, from the viewpoint of fluid flow analysis, is predicted feasible and with characteristic of low hemolysis and low thrombogenesis, because the stress tension and resident time are smaller than the limit and the vortices are destroyed for the periodic flow.

Analysis of Counterflow Heat Exchangers with the Concept of Available Energy (가용에너지를 이용한 대향류 열교환기의 해석)

  • 김수연;정평석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2189-2195
    • /
    • 1992
  • The performance of heat exchanger as an energy conversion device can be described by the available energy output and efficiency. The efficiency is defined as the ratio of the available energy output and the exergy of the heat source flow. In present study, a counterflow heat exchanger is analyzed and the conditions to obtain maximum output is numerically determined. As a result, the avilable energy obtained by the cold flow can be determined as functions of the heat capacity flow, the cold flow inlet temperature and the heat transfer capacity of heat exchanger. At the maximum output condition the heat capacity flow of the cold fluid is larger than that of the heat source, and the heat capacity flow ratio is equal to the ratio of the cold flow inlet temperature and the atmospheric temperature. And the avilable energy output increases as the heat transfer capacity of the heat exchanger become larger, but in the economic point of view there is also an optimum heat transfer capacity for a given heat source flow.

Literature investigation on the meaning of Mahwang, Gyeji, Sesin, Buja and Related Prescriptions (마황(麻黃), 계지(桂枝), 세신(細辛), 부자(附子)와 관련 처방의 의미(意味)에 대(對)한 소고(小考))

  • Lee, Tae Hee
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.261-265
    • /
    • 2018
  • Objective : This discussion was performed in order to find a meaning of Mahwang, Gyeji, Sesin, Buja and Related Prescriptions connected to the distribution problem of body fluid caused by inflammation. Methods : The pharmacological effects of the prescriptions including Mahwang, Gyeji, Sesin, Buja and these herbs which are used as an individual case were investigated literally. Results : Mahwang, Gyeji, Sesin, Buja and the prescriptions including these herbs have the effect of strengthening heart and increasing cardiac output. Therefore it can be thought that the effect of distributing body fluid is included in the Mahwang, Gyeji, Sesin, Buja and Related Prescriptions. And especially the effect of mahwang could not be restricted to the diaphoretic effect. The effect of Mahwang could be interpreted as the distributing body fluid effect through the stimulation of sympathetic nervous system and inhibition of parasympathetic system. Conclusion : Mahwang, Gyeji Sesin and Buja and related prescriptions have the effect of distributing body fluid via stimulation of sympathetic system.

Neuro-Control of Seismically Excited Structures using Semi-active MR Fluid Damper (반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어)

  • 이헌재;정형조;오주원;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.313-320
    • /
    • 2002
  • A new semi-active control strategy for seismic response reduction using a neuro-controller and a magnetorheological (MR) fluid damper is proposed. The proposed control system consists of the improved neuro-controller and the bang-bang-type controller. The improved neuro-controller, which was developed by employing the training algorithm based on a cost function and the sensitivity evaluation algorithm replacing an emulator neural network, produces the desired active control force, and then the bang-bang-type controller causes the MR fluid damper to generate the desired control force, so long as this force is dissipative. In numerical simulation, a three-story building structure is semi-actively controlled by the trained neural network under the historical earthquake records. The simulation results show that the proposed semi-active neuro-control algorithm is quite effective to reduce seismic responses. In addition, the semi-active control system using MR fluid dampers has many attractive features, such as the bounded-input, bounded-output stability and small energy requirements. The results of this investigation, therefore, indicate that the proposed semi-active neuro-control strategy using MR fluid dampers could be effectively used for control of seismically excited structures.

  • PDF

Optical Image Encryption Technique Based on Hybrid-pattern Phase Keys

  • Sun, Wenqing;Wang, Lei;Wang, Jun;Li, Hua;Wu, Quanying
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.540-546
    • /
    • 2018
  • We propose an implementation scheme for an optical encryption system with hybrid-pattern random keys. In the encryption process, a pair of random phase keys composed of a white-noise phase key and a structured phase key are positioned in the input plane and Fourier-spectrum plane respectively. The output image is recoverable by digital reconstruction, using the conjugate of the encryption key in the Fourier-spectrum plane. We discuss the system encryption performance when different combinations of phase-key pairs are used. To measure the effectiveness of the proposed method, we calculate the statistical indicators between original and encrypted images. The results are compared to those generated from a classical double random phase encoding. Computer simulations are presented to show the validity of the method.

Effects of Viscosity of Hydraulic Oil on the Performance of Actuator (유압유 점도가 액추에이터 성능에 미치는 영향)

  • Kim, Jin-Hyoung;Han, Su-Min;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.