• Title/Summary/Keyword: flowing concrete

Search Result 224, Processing Time 0.024 seconds

Improvement of Surface Glossing of Exposed Concrete Applying Flowing Concrete Method -Focused on the Construction of the Service Training Institure (유동화 공법에 의한 제치장 콘크리트의 표면광택도 향상 -청주대학교 대천 수련원 공사를 중심으로-)

  • Jeon, Chung-Keun;Kim, Hyo-Goo;Oh, Sun-Kyo;Bahn, Ho-Yong;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.85-88
    • /
    • 2000
  • This paper is dealt with the ways of the improvement of the surface glossing of exposed concrete through the construction field test. The field applied in this test is located at Daechon, Chungnam province where the service training institute of Chongju university has been built. The flowing method is applied. According to the test results, as water to cement ratio, or slump increase after flowed, surface glossing tends to be improved. As for the effects of the forms typer, following orders, which is shown to be better surface glossing values, are given; Acryle > fancy wood forms > steel forms > plywood forms.

  • PDF

The Study for the Air Bubble Deterioration of Combined High Flowing Self-Compacting Concrete (병용계 고유동 자기충전콘크리트의 기포저감을 위한 연구)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ruy, Deug-Hyun;Jeong, Jae-Gwon;Kang, Hyun-Jin;Lee, Jae-Nam
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.449-452
    • /
    • 2008
  • This study is to manufacture HSCC (High flowing Self-Compacting Concrete) be able to construction without vibration & hardening, and it is stable according to the change of the surface number of aggregate and to examine the factor of reduction occurred before after hardening through the indoor experiment. It is essential to use of the thickener to increase the viscosity in the combined HSCC. In this result, it make more bubbles than HSCC of pulverulent body. The result of study has shown, through the surface air bubble by not passed air bubbles within concrete after hardening, It has bad effect in not only appearance of structures but strength & duration. It is the experiment for air bubble of concrete according to the types of aggregate (fine aggregate), mixing time of concrete, exfoliation, material of model form and so that reduce the air bubble of combined HSCC. Experiments have shown, the effect of exfoliation was bigger than the effect of form for the performance of surface finishing of combined HSCC after hardening according to the exfoliation or material of model form and the opaque guris has good condition of finishing.

  • PDF

Estimation of the Setting Time of the High Flowing Concrete Using Durometer (Durometer를 이용한 고유동 콘크리트의 응결시간 판정 방법)

  • Han, Min-Cheol;Shin, Yong-Sub;Han, In-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.143-150
    • /
    • 2019
  • The purpose of this study was to propose how to determine the setting time related to the determination of the surface finish working time of the concrete using a Durometer, which is used as a rubber hardness meter. Two different types of Durometer were used to measure the setting time of the concrete. High flowing concrete with 40% of water to binder ratio was fabricated maintaining $600{\pm}100mm$ of slump flow. The test results indicated that the application of the Durometer resulted in a high correlation with the penetration resistance tester in both mortar and concrete. When measuring the setting time of the concrete, with properly used with Durometer, evaluation of the setting time of the concrete can be available. Therefore, it is thought that the measurement of the final set of the durometer C type can be useful to decide the limit time of the finishing operation and the time of the rejuvenation of the curing process by measuring the finishing set at 40 HD in the case of the initial set and 10 HD in the case of D type.

Flowability Properties of Combined High Flowing Self-Compacting Concrete to the Addition of Viscosity Agent (증점제 첨가량 변화에 따른 병용계 고유동 자기충전 콘크리트의 유동특성)

  • Choi, Yun-Wang;Jeong, Jae-Gwon;Eom, Joo-Han;Choi, Wook;Kim, Kyung-Hwan;Moon, Dae-Joong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.369-372
    • /
    • 2008
  • In this research experimentally analyzes the flow characteristics of a combined High flowing Self-Compacting Concrete of which the viscosity agent and defoaming agent addition amount are changed, to make the combined High flowing Self-Compacting Concrete that can secure the required flow performance and air amount. As a result of the experiment, the slump flow of the combined High flowing Self-Compacting Concrete added with viscosity agent increases when the viscosity agent addition amount is 0.2%(${\times}$W %). When viscosity agent addition amount increases, viscosity agent shows that it largely deviates from the regulation value in the flow time of V-funnel, which is presented in the JSCE standards (grade 2). Also, all mixtures, except for mixtures added with viscosity agent, defoaming agent, and AE agent, do not meet a target air amount $4.5{\pm}1.5%$. High flowing Self-Compacting Concrete mixtureadded with defoaming agent shows that although time passes after its first mixture, its air amount reduces a little. Based on the experiment, we can know an optimal polymer amount to obtain the required flow performance

  • PDF

Flowability and Strength Properties of High Flowing Self-Compacting Concrete Using for Tunnel Lining

  • Choi, Yun-Wang;Choi, Wook;Kim, Byoung-Kwon;Jung, Jea-Gwone
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • So far, there has been no study of the concrete to strengthen in the lining of the tunnels, except for the study of the stability of subgrade and the tunnel construction technologies. In the existing concrete work for tunnel lining, lots of problems happen due to the partial compaction and the material segregation after casting concrete. Accordingly, the aim of this study is to improve economic efficiency and secure durability through the improvement of the construction performance and quality of the concrete for the tunnel lining among the civil structures. Therefore, the compactability and strength properties of the High Flowing Self-Compacting Lining Concrete (HSLC) are evaluated to develop the mixing proportion for design construction technology of HSLC that can overcome the inner cavity due to the reduced flowability and unfilled packing, which has been reported as the problem in the existing lining concrete. The result of the evaluation shows that the ternary mix meets the regulations better than the binary mix. Consequently, it has been judged applicable to the cement for tunnel lining.

An Experimental Study on the Flowing and Strength Properties of Concrete using Meta kaolin (메타카올린을 사용한 콘크리트의 유동특성 및 강도특성에 관한 실험적 연구)

  • Lee Byung-Soo;Lee Sang-Soo;Song Ha-Young;Kim Eul-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.425-428
    • /
    • 2005
  • In this study, the experiment was carried out to investigate and analyze the strength properties and flowability of concrete using meta kaolin. The main experimental variables were water/binder ratio 40.0$\%$, water content 170kg/$m^{3}$ and mineral admixtures such as slag powder, silica fume and meta kaolin. According to the test results, the principle conclusions are summarized as follows. 1) The flowing property of concrete that uses meta kaolin appears to be the same to that of the silica fume concrete, but the slump flow that evaluates the compaction ability of concrete shows the most favorable performance. 2) The air content of the concrete that uses meta kaolin can be effectively controlled for the target performance in compliance with the use of AE agent. 3) When it comes to the strength of concrete that uses meta kaolin, the most favorable development of strength occurs when the replacement rate is 10$\%$, in case of the silica fume, and the slag power. In addition, as the replacement rate increases, so becomes the development of concrete strength favorable.

  • PDF

Properties of Mixing Proportions with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축 강도수준별 배합특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Jung, Woo Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.163-169
    • /
    • 2009
  • The research performed a test concerning the fluidity and strength of concrete manufactured by combining lime stone power, fly ash, and blast furnace slag into two and three component systems, aiming at evaluating rheological and dynamic properties of concrete by manufacturing High Flowing Self-Compacting according to the strength changes of three levels. As a result of the research, for High Flowing Self-Compacting of 30 MPa, the combination of lime stone power 20% and fly ash 30% for securing quality and strength and adjusting viscosity satisfied the required performance. For High Flowing Self-Compacting of 50 MPa, the combination of blast furnace slag 10% and fly ash 20% satisfied the fluidity and strength of the requirement performance. Also, for 70 MPa that has many power contents, the combination of blast furnace slag 20% and fly ash 10% for the increase of fluidity and the reduction of viscosity satisfied the required performance. It is judged that fly ash in all combinations can be used to secure viscosity and reduce concrete amount. In addition, it is judged that for High Flowing Self-Compacting according to the levels of compressive strength the combination of three component system including fly ash is more appropriate than the combination of two component system.

Numerical simulation on the coupled chemo-mechanical damage of underground concrete pipe

  • Xiang-nan Li;Xiao-bao Zuo;Yu-xiao Zou;Yu-juan Tang
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.779-791
    • /
    • 2023
  • Long-termly used in water supply, an underground concrete pipe is easily subjected to the coupled action of pressure loading and flowing water, which can cause the chemo-mechanical damage of the pipe, resulting in its premature failure and lifetime reduction. Based on the leaching characteristics and damage mechanism of concrete pipe, this paper proposes a coupled chemo-mechanical damage and failure model of underground concrete pipe for water supply, including a calcium leaching model, mechanical damage equation and a failure criterion. By using the model, a numerical simulation is performed to analyze the failure process of underground concrete pipe, such as the time-varying calcium concentration in concrete, the thickness variation of pipe wall, the evolution of chemo-mechanical damage, the distribution of concrete stress on the pipe and the lifetime of the pipe. Results show that, the failure of the pipe is a coupled chemo-mechanical damage process companied with calcium leaching. During its damage and failure, the concentrations of calcium phase in concrete decrease obviously with the time, and it can cause an increase in the chemo-mechanical damage of the pipe, while the leaching and abrasion induced by flowing water can lead to the boundary movement and wall thickness reduction of the pipe, and it results in the stress redistribution on the pipe section, a premature failure and lifetime reduction of the pipe.

The Investigation of Application of Reject Ash and Recycled Fine Aggregate to High Flowing CLSM (고유동 CLSM를 위한 Reject Ash 및 순환 잔골재의 활용성 검토)

  • Song, Yong-Won;Yoon, Seob;Kim, Jung-Bin;Jeong, Yong;Park, Chan-Kyu;Lee, Seung-Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.403-404
    • /
    • 2009
  • This study has investigated application of the industrial by-product of reject ash and recycled fine aggregate to consider the economical issue to high flowing CLSM(controled low-strength material). But this high flowing CLSM is required more binder, so it has been estimated the influence of reject ash content, use of recycled fine aggregate and crushed sand, and air content about properties of CLSM.

  • PDF

Development of Flowability Measurement Device using Laser Diode (레이져 다이오드를 이용한 유동성능 측정장치 개발)

  • Jeong, Jae-Gwon;Kim, Kyung-Hwan;Eom, Joo-Han;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.247-248
    • /
    • 2009
  • Testing standards both nationally and abroad for high flowing concrete are presented about slump flow and the time to reach 500 mm. However, the slump flow testing method to measure flow properties of high flowing concrete results in measurement error due to the differences in each person's perception of the test. This study introduced laser diode to reduce such testing errors from personal differences in experimental procedure.

  • PDF