• Title/Summary/Keyword: flowing concrete

Search Result 224, Processing Time 0.019 seconds

Mechanical Properties of the High Flowing Self-Compacting Concrete for Members of Bridge Overcrowded Arrangement of Bar (과밀 배근된 교량 부재용 초유동 자기충전 콘크리트의 역학적 특성)

  • Choi, Yun-Wang;Kim, Yong-Jic;Kang, Hyun-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.175-183
    • /
    • 2008
  • Domestically, application of High Flowing Self-Compacting Concrete (HSCC) is limited to building structures and it is difficult to find examples of application in civil infrastructural constructions. However, in the case of North America and Europe, by introducing precast and prestressed system, HSCC is being used for high-density reinforced bridge members. Hence it is assessed that broadening the utilization of HSCC into areas such as bridges and civil construction is required. Therefore in this research, to apply HSCC to high-density reinforced bridge members, ground granulated blast-furnace slag and fly ash were mixed in binary and ternary systems. Also the dynamical characteristics of HSCC, following 1st class regulations of Japan Society of Civil Engineers (JSCE), were assessed to enable application on high-density reinforced structures. The test results revealed ternary system mixture showed better mechanical characteristics than binary system mixture and the application on high-density reinforced precast bridge members seems possible.

Flowability and Strength Properties of High Flowing Self-Compacting Concrete with Steel Fiber Reinforced (강섬유가 혼입된 고유동 자기충전 콘크리트의 유동 및 강도 특성)

  • Choi, Yun-Wang;Choi, Wook;Jung, Jea-Gwone;An, Tae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.161-168
    • /
    • 2009
  • In this study, the concrete, in which the steel fiber(SF) with different volume-surface ratios and lengths was intermixed in High flowing Self-Compacting Concrete(HSCC), was produced to compare with steel fiber reinforced concrete as a part of plan to improve the workability and the quality of steel fiber reinforced concrete. As the result of experiment, the flowing and passing characteristics of HSCC intermixed with SF was highly improved as there was no fiber ball phenomenon due to the effect of high flowability and the viscosity, and in the identical range of compressive strength, it showed the tendency that the splitting and flexural strength was increasing as the length was getting longer regardless of volume-surface ratio when compared with HSCC which was intermixed with SF. It is estimated that in case of application of HSCC intermixed with steel fiber to work sites, it would be possible to improve the workability and the quality which would be better than that of steel fiber reinforced concrete which has been used.

The Influence of the Aggregate Grain Shape on Compactability of High Flowing Concrete (고유동콘크리트의 충전특성에 미치는 골재 입형의 영향)

  • 이승한;정용욱;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.21.2-274
    • /
    • 1999
  • This study aims to examine the influence of the unit powder content of concrete and the fine aggregate ration of high flowing concrete after the improvement of grain shape of the coarse aggregate. According to the experimental results, flowbility and compating of concrete presents the best states in the S/a which has the smallest void ratio. The coarse aggregate after improvement of grain shape has been changed from 0.68 circular ratio of disc shape to 0.73 circular shape. It lead to be down 6% of fine aggregate ratio (from 47% to 41%), which is satisfactory to compacting. Also, the improvement of grain shape of the coarse aggregate lead the lowest unit powder content to be down 60kg/㎥ from (530kg/㎥ to 470kg/㎥). And about 11% unit water content can be reduced as unit powder conent is down.

  • PDF

The required performance of the super flowing concrete for LNG (LNG tank용 초유동 콘크리트의 배합설계)

  • 권영호;전성근;백승준;이용일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.463-468
    • /
    • 1999
  • The slurry wall of Inchon LNG receiving terminal tank will be planned the super flowing concrete having properties of high strength (required strength 520kg/$\textrm{cm}^2$), no-vibrating and massive structure in the underground. For the performance of this concrete, we investigate and select all materials, the optimum mix design and sensibility test in the laboratory. As test results, we choose portland blast-furnace slag cement and lime stone powder(L.S.P) as cementitious materials, W/C 41%(W/B 35.4%), S/a 50.8% and unit volume of coasre aggregate 0.30 as optimum mix design. Also test result of the fresh and hardened concrete are satisfied with specifications of slurry wall.

  • PDF

The Practical Application on the Super Flowing Concrete using Manufactured Sand (부순모래를 사용한 초유동 콘크리트의 현장적용)

  • Park, Chil-Lim;Kwon, Yeong-Ho;Lee, Sang-Soo;Won, Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.9-14
    • /
    • 1998
  • In this paper, we described the basic elements(flowabiligy, fillingability, elapsed time, pumpability, no-vibrating effects, and etc.) required for the application and quality control of the super flowing concrete(SFC) in Top Down site. Also, manufactured sand and fly ash were used for investigating characteristics of SFC through various experiments(mix design, optimum mix condition) before placing the concrete in site. As a result of this project, the developed SFC shown high flowability and self-fillingability in the joint good enough for the requirement. Futhermore, inner uniformity of the no-vibrated concrete was verified by testing reformed space. Therefore, quality control and compressive strength(360kg/$\textrm{cm}^2$) can be secured by using SFC even without vibrating.

  • PDF

The Practical Application on Super Flowing Concrete (Inchon subway 1-10 section) (초유동 콘크리트의 적용사례)

  • 박칠림;김성원;안재현;권영호;이상수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.916-921
    • /
    • 1998
  • This study describes the result for the placement of the super flowing concrete(SFC) in under-pinning-top-slab which is located Inchon subway section 1-10 where, due to heavy reinforcements and limited working space, it was difficult to place concrete. After placing 600㎥, smooth construction and quality control were possible due to the good flow-ability, self-fillingability, and the resistance of segregation of the SFC itself. Furthermore, economical efficiency was obtained through not only the reduction of the works, labors, and site noise but also the efficient construction control. Because of the crack prevention, high strength, and a fine concrete surface, this study could be considered as a momentum to be adopted generally for applying the proposed method to the difficult subway construction area in the near future.

  • PDF

Strength Propreties of Binary and Ternary Blended of Ultra Flowing Self-Compacting Concrete (2성분계 및 3성분계 초유동 자기충전 콘크리트의 강도 특성)

  • Choi, Yun-Wang;Kim, Kyung-Hwan;Ha, Sang-Woo;Moon, Dae-Joung;Kang, Hyun-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.489-492
    • /
    • 2006
  • Needs for the new technologies and cutting-edge Ultra Flowing Self-Compacting Concrete are emerging as the concrete structures are becoming bigger and more specialized recently. In North America and Europe, SCC, which has high resistance against flow ability and segregation, is being used as concrete material in applications such as precast and prestressed bridges, where reinforcing bars are overcrowdedly placed. In Korea, SCC has been utilized limitedly in building structures but its utilization should be expanded to engineering structures such as bridges. In this study, for the application in precast and prestressed bridges with overlycrowded reinforcing bars, USCC was mixed with admixtures to give a binary system and a ternary system according to the 1st grade rules by JSCE (Japan Society of Civil Engineers). Compressive strength and splitting tensile strength of the resulting USCCs were tested. Elastic modulus were compared with the values suggested in CEB-FIP code and ACI 318-05.

  • PDF

Determination of Optimal Mixture Proportion of Segregation Reducing Type Superplasticizer for High Fluidity Concrete (고유동 콘크리트용 분리저감형 유동화제의 최적배합비 결정)

  • 한천구;김성수;손성운
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.275-282
    • /
    • 2002
  • High fluidity concrete needs high dosage of superplasticizer to acquire sufficient fluidity and high contents of fine powder and viscosity agents to prevent segregation. But it requires high manufacturing cost and has difficult in quality control. Therefore, in this paper, determination of optimal mixture proportion of segregation type superplasticizer for high fluidity concrete and manufacturing high fluidity concrete by applying developed segregation reducing type superplasticizer are discussed using flowing concrete method. According to test results, as dosage of superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that adding viscosity agent into it reduce bleeding and improve segregation resistance. Dosage of AE agent into it containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found.

A Fundamental Study on the Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method (유동화공법에 의해 제조한 고유동 콘크리트의 원가분석에 관한 기초적 연구)

  • 한민철;손성운;오선교;김성수;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2002.11a
    • /
    • pp.99-102
    • /
    • 2002
  • This paper discusses the estimation of construction cost of high fluidity concrete using segregation reducing type superplasicizer with 350kgf/cm2 of design strength and 60$\pm$5cm of slump flow in order to verify the cost down effect of high fluidity concrete compared with that of plain concrete with 350kgf/cm2 of design strength and 18cm of slump and with 210kgf/cm2 of design strength and 15cm of slump. According to research, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.

  • PDF

Cracking Characteristics of RC Beams made of High Flowing Self-Compacting Concrete (고유동 자기충전 철근 콘크리트 보의 균열특성)

  • Ahn, Tae-Ho;Kim, Jin-Cheol;Kim, Hong-Sam;Ha, Sung-Kug;Lee, Haeng-Ki;Choi, Yun-Wang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.425-426
    • /
    • 2010
  • The cracking characteristics of high flowing self-compacting concrete(HSCC) and conventional concrete(CC) was investigated. HSCC shows high crack resistance compare to CC due to self compacting properites.

  • PDF