• Title/Summary/Keyword: flower extract

Search Result 254, Processing Time 0.021 seconds

Phytochemical Compounds from the Ethanolic Extract of Gymnema sylvestre, Senna auriculata and Cissus quadrangularis through GC-MS Analysis

  • Sindhuja G;Mary Agnes A
    • Mass Spectrometry Letters
    • /
    • v.14 no.2
    • /
    • pp.25-35
    • /
    • 2023
  • Plants are a traditional source of many chemicals used as biochemical, flavors, food, color, and pharmaceuticals in various countries, especially India. Most herbal medicines and their derivatives are often made from crude extracts containing a complex mixture of various phytochemical chemical components (secondary metabolites of the plants). This study aimed to identify bioactive compounds from the different parts of the plant from the ethanolic extract of Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis (leaves, flower, stem) by gas chromatography-mass spectroscopy (GC-MS). The gas chromatography - mass spectrometry analysis revealed the presence of various compounds like 3,4-dimethylcyclohexanol, hexanoic acid, D-mannose, and N-decanoic acid. Hence, the Gymnema sylvestre, Senna auriculata, and Cissus quadrangularis may have chemopreventive, anti-cancer, anti-microbial activity, antioxidant, anti-diabetic activity, anti-inflammatory, and antifungal due to the presence of secondary metabolites in the ethanolic extract. These phytochemicals are supported for traditional use in a variety of diseases.

Inhibition of Lipopolysaccharide-Inducible Nitric Oxide Synthase, $TNF-{\alpha}$, $IL-1{\beta}$ and COX-2 Expression by Flower and Whole Plant of Lonicera japonica (금은화(金銀花) 및 금은화전초(金銀花全草)가 Raw 264.7 cell에서 LPS로 유도된 NO의 생성, iNOS, COX-2 및 cytokine에 미치는 영향)

  • Lee, Dong-Eun;Lee, Jae-Ryung;Kim, Young-Woo;Kwon, Young-Kyu;Byun, Sung-Hui;Shin, Sang-Woo;Suh, Seong-Il;Kwon, Taeg-Kyu;Byun, Joon-Seok;Kim, Sang-Chan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.2
    • /
    • pp.481-489
    • /
    • 2005
  • Lonicerae Flos has antibacterial effects against Staphylococcus aureus, streptococci, pneumococci, Bacillus dysenterii, Salmonella typhi, and paratyphoid. It is an antiviral agent. The herb has a cytoprotective effect against $CCl_{4}-induced$ hepatic injury. It has antilipemic action, interfering with lipid absorption from the gut. Nowadays this herb is used mainly in the treatment of upper respiratory infections, such as tonsillitis and acute laryngitis. It is also used in the treatment of skin suppurations, such as carbuncles, and to treat viral conjunctivitis, influenza, pneumonia, and mastitis. Lonicerae Flos is dried flower buds of Lonicera japonica, L. hypoglauca, L. confusa, or L. dasystyla. But, for the most part, we use whole plant of Lonicera japonica, as a flower bud of it. And, little is known of the original copy of effects of whole plant, except for the 'Bon-Cho-Gang-Mok', which is written the effects of flower of Lonicera japonica are equal to effects of leaves and branch of it. The present study was conducted to evaluate the effect of flower and whole plant of Lonicera japonica on the regulatory mechanism of cytokines, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX-2) for the immunological activities in Raw 264.7 cells. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, flower and whole plant of Lonicera japonica water extracts inhibited nitric oxide production in a dose-dependent manner and abrogated iNOS and COX-2. Flower and whole plant of Lonicera japonica water extract did not affect on cell viability. To investigate the mechanism by which flower and whole plant of Lonicera japonica water extract inhibits iNOS and COX-2 gene expression, we examined the on phosphorylation of inhibitor ${\kappa}B{\alpha}$ and assessed production of $TNF-{\alpha}$, $interleukin-1{\beta}$ $(IL-1{\beta})$ and interleukin-6 (IL-6). Results provided evidence that flower and whole plant of Lonicera japonica inhibited the production of $IL-1{\beta}$, IL-6 and activated the phosphorylation of inhibitor ${\kappa}B{\alpha}$ in Raw 264.7 cells activated with LPS. These findings suggest that flower and whole plant of Lonicera japonica can produce anti-inflammatory effect, which may play a role in adjunctive therapy in Gram-negative bacterial infections, respectively.

Suppressive Effects of Chrysanthemum zawadskii var. latilobum Flower Extracts on Nitric Oxide Production and Inducible Nitric Oxide Synthase Expression (구절초 꽃 추출물의 Nitric Oxide 생성과 Inducible Nitric Oxide Synthase 발현 억제 효과)

  • Han, Ji-Young;Kim, Young-Hwa;Sung, Jee-Hye;Um, Yu-Rry;Lee, Yi;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.12
    • /
    • pp.1685-1690
    • /
    • 2009
  • In this study, we investigated the effect of C. zawadskii extract on nitric oxide (NO) production, prostaglandin E2 (PGE2) production, protein and mRNA expression of inducible nitric oxide synthase (iNOS) in LPS-induced RAW 264.7 macrophage cells. C. zawadskii extract (5~50 μg/mL) significantly inhibited LPS-induced NO production in a concentration-dependent manner ranging from 23.3% to 100%. Consistent with the inhibitory effect on NO production, C. zawadskii extract inhibited the protein expression and mRNA expression of iNOS. Although flower extracts of C. zawadskii was not effective on the expression of PGE2 and COX-2, flower extracts of C. zawadskii, however, showed a strong anti-inflammatory activity through inhibition of NO production and iNOS expression. The present results suggest that C. zawadskii extract has an inhibitory effect on NO production, and thus can be used as an anti-inflammatory agent.

Antibacterial Activities of Flower Tea Extracts against Oral Bacteria (꽃차용 꽃 추출물의 구강위생균에 대한 항균특성)

  • Han, Young-Sook;Kang, So-Jin;Pack, Se-A;Lee, Sun-Suk;Song, Hee-Ja
    • Korean journal of food and cookery science
    • /
    • v.27 no.3
    • /
    • pp.21-28
    • /
    • 2011
  • In this study, we analyzed flower tea activity against oral bacteria. Lagerstroemia indica, Paeonia suffruticosa and Hemerocallis fulva showed high extract yields. Bellis perennis, Punica granatum and Cercis chinensis showed the high rates of yield by ethanol extraction. Extract yield seemed to be related to the characteristics of the specimens rather than to the solvent. Streptococcus mutans, Streptococcus obrinus, Porphyromonas gingivalis and Prevotella intermedia were used to investigate extracts activity against bacteria; the former two cause dental caries and the latter two cause halitosis. Cornus officinalis, L. indica, P. granatum and P.s uffruticosa showed high antibacterial activities against S. mutans. In specimens extracted with ethanol, P. suffruticosa, Camellia sinensis, Camellia japonica L. and Rosa hybrida showed high antibacterial activities. L. indica, P. granatum and C. officinalis showed high antibacterial activities against S. sobrinus. C. officinalis, P. granatum, L. indica and P. suffruticosa showed high activities for specimens extracted with ethanol. The results show that the warm extracts of C. officinalis, L. indica and P. granatum may be effective to prevent dental caries. In particular, the ethanol-based extracts of C. officinalis, P. suffruticosa and C. sinensis were effective to prevent dental caries and thus may be highly marketable. Chrysanthemum zawadskii, R. hybrida, P. granatum, C. japonica L. and Zinnia elegans showed high antibacterial activity against P.gingivalis. R. hybrida showed the highest ethanol extract activity, followed by P. suffruticosa, P. granatum, C. japonica L. and L. indica. R. hybrida, P. granatum, C. morifolium and C. japonica showed high activity against Pr.intermedia in the order named. C. zawadskii, P. granatum, L. indica, C. japonica and A. princeps showed high ethanol extract activity. Thus, the warm extracts of R. hybrida, P. granatum and C. japonica may be helpful to reduce halitosis. In addition, the ethanol-based extracts of P. granatum, C. japonica and L. indica are expected to be highly marketable as mouthwashes.

An In Vitro Study on the Activity of Abelmoschus manihot L. Flower Extract on Skin Anti-wrinkle and Skin Whitening (금화규(Abelmoschus manihot ) 꽃 추출물의 In Vitro 피부 미백 및 주름 개선 효능 연구)

  • Kwon, Hyun-Ji;Beom, Seok-Hyun;Hyun, Jin-A;Kang, Eun-Bin;Park, Ha-Eun;Han, Dong-Geun;Kim, Hyun-Jeong;Choi, Eun-Young;An, Bong-Jeon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.4
    • /
    • pp.353-360
    • /
    • 2021
  • In this study, the skin whitening and anti-wrinkle activity of Abelmoschus manihot (A. manihot) flowers were evaluated as a cosmetic material. A. manihot flowers were extracted using water and 70% ethanol. Tyrosinase inhibitory activity was evaluated to increase concentration-dependent inhibitory activity in both water (AMW) and 70% ethanol extracts (AME), and was found to inhibit melanin biosynthesis at concentrations that did not affect survival in B16F10 cell lines at 10, 25, 50, 75, and 100 ㎍/mL. As a result of measuring the anti-wrinkle effectiveness of A. manihot flowers, 70% ethanol extract (AME) showed higher anti-wrinkle activity than water extract (AMW). Through the results of this study, it is considered that the A. manihot flower extract can be used as a functional cosmetic material with whitening and anti-wrinkle activity.

Antimicrobial and Antioxidant Properties of Secondary Metabolites from White Rose Flower

  • Joo, Seong-Soo;Kim, Yun-Bae;Lee, Do-Ik
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.57-62
    • /
    • 2010
  • Low-molecular-weight secondary metabolites from plants play an important role in reproductive processes and in the defense against environmental stresses or pathogens. In the present study, we isolated various volatiles and phenolic compounds from white Rosa rugosa flowers, and evaluated the pharmaceutical activities of these natural products in addition to their ability to increase survival in response to environmental stress and pathogen invasion. The DPPH and hydroxyl radical-mediated oxidation assay revealed that the white rose flower extract (WRFE) strongly scavenged free radicals in a dose dependent manner. Moreover, WRFE inhibited the growth of E. coli and fatally attacked those cells at higher concentration (>0.5 mg/mL). FITC-conjugated Annexin V stain provided further evidence that WRFE had strong antimicrobial activity, which may have resulted from a cooperative synergism between volatiles (e.g. 1-butanol, dodecyl acrylate and cyclododecane) and phenolic compounds (e.g. gallic acid) retained in WRFE. In conclusion, secondary metabolites from white rose flower hold promise as a potential natural source for antimicrobial and non-chemical based antioxidant agents.

Development of Biologically Active Compounds from Edible Plant Sources XIV. Cyclohexylethanoids from the Flower of Campsis grandiflora K. Schum.

  • Kim, Dong-Hyun;Oh, Young-Jun;Han, Kyung-Min;Chung, In-Sik;Kim, Dae-Keun;Kim, Sung-Hoon;Kwon, Byoung-Mog;Park, Mi-Hyun;Baek, Nam-In
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • Campsis grandiflora K. Schum. flower was extracted with 80% aqueous MeOH, and concentrated extract was successively partitioned with EtOAc, n-BuOH, and $H_2O$. From n-BuOH fraction, two cyclohexylethanoids were isolated through repeated silica gel and Sephadex LH-20 column chromatographies. Based on physico-chemical data obtained from NMR, MS, and IR, chemical structures of compounds were determined as 1,4-dihydroxy-3,4-(epoxyethano)-5-cyclohexene (1) and cornoside (2). These compounds were isolated for the first time from C. grandiflora K. Schum flower.

Antifungal and Antioxidant Activities of Extracts from Leaves and Flowers of Camellia japonica L. (동백나무 잎과 꽃 추출물의 항미생물 활성 및 항산화 효과)

  • Lee, Sook-Young;Hwang, Eun-Ju;Kim, Gi-Hae;Choi, Young-Bok;Lim, Chae-Young;Kim, Sun-Min
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.3
    • /
    • pp.93-100
    • /
    • 2005
  • This research was performed to investigate the possibilities of industrial usage of camellia (Camellia japonica L.) by examining the antioxidant and antimicrobial effects of methanol extract with different sections. Content of total phenolics, DPPH radical scavenging activities and antibacterial activity of young leaf, mature leaf, flower bud, flower, bark, and seed of camellia were compared in vitro experimental models. Total phenolics was contained the higher in young leaf (74.62 mg), flower bud (65.02 mg) and flower (62.42 mg) but less than 20.95 mg per 100 g of dry weight in other parts of Camellia japonica L. And effects of antioxidant measured by DPPH radical scavenger activity ($RC_{50}$, reduce concentration 50%), was shown higher $7.16{\sim}18.14\;{\mu}g/m{\ell}$ in methanol extract of young leaf, flower bud and flower than $61.23\;{\mu}g/m{\ell}$ of BHT as a chemical oxidant. Also, the antimicrobial activity of Camellia japonica L. extracts determined using a paper disc method against food-borne pathogen and food spoilage bacteria, the young leaves extracts showed the most active antimicrobial activity against 7 kinds of harmful microorganisms. Flower bud extracts showed the highest antibacterial activity against P. aeruginosa and Enterobacter spp. C1036. In addition, the minimum inhibitory concentration (MIC) of young leaf extract against B. subtillis,S. fradiae,S. aureus,E. coli,P. aeruginosa, Enterobacter spp. C1036, and S. typhimurium were revealed 1 to 15 ${\mu}g/m{\ell}$. As a result, antimicrobial activity of camellia extracts was shown higher gram positive bacteria than gram negative bacteria.

Anti-Inflammatory Effect of Erigeron annuus L. Flower Extract through Heme Oxygenase-1 Induction in RAW264.7 Macrophages (RAW264.7 대식세포에서 Heme Oxygenase-1의 유도에 의한 개망초 (Erigeron annuus L.) 꽃 Methanol 추출물의 항염증 효과)

  • Sung, Mi-Sun;Kim, Young-Hwa;Choi, Young-Min;Ham, Hyeon-Mi;Jeong, Heon-Sang;Lee, Jun-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.11
    • /
    • pp.1507-1511
    • /
    • 2011
  • This study investigated the anti-inflammatory effect of Erigeron annuus L. flower (EAF) methanol extract. We examined the involvement of heme oxygenase-1 (HO-1) in the inhibitory activities of EAF methanol extract on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Cell viability and NO assays were performed. In addition, inducible nitric oxide synthase (iNOS) and HO-1 expressions were detected by Western blotting and blocking HO-1 activity on NO production. EAF methanol extract (25, 50, 100, 200 ${\mu}g$/mL) significantly inhibited LPS-stimulated NO production (p<0.05; 12.82, 9.61, 6.83, 2.52 ${\mu}m$) in a concentration-dependent manner. EAF methanol extract also reduced the expression of iNOS protein. The EAF methanol extract induced the expression of HO-1 in a dose-dependent manner. Blockage of HO-1 activity by zinc protoporphyrin suppressed EAF methanol extract-induced reductions in the production of NO. The present results suggest that EAF methanol extract has a potent anti-inflammatory effect in RAW264.7 macrophages through the induction of HO-1.

Neolignan Derivatives from the Flower of Magnolia biondii Pamp. and their Effects on IL-2 expression in T-cells

  • Nguyen, Thi Tuyet Mai;Nguyen, Thi Thu;Lee, Hyun-Su;Jun, Chang-Duk;Min, Byung Sun;Kim, Jeong Ah
    • Natural Product Sciences
    • /
    • v.23 no.2
    • /
    • pp.119-124
    • /
    • 2017
  • The isolation of the MeOH extract from the flower bud of Magnolia biondii Pamp. using various column chromatographies and HPLC led to eleven neoglignan derivatives (1 - 11). Their structures were mainly determined by 1D and 2D NMR spectral data analysis and physiological methods. The isolated compounds (1 - 11) were tested for anti-allergic effects using IL-2 inhibitory assay in Jurkat T cells.