Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.1.057

Antimicrobial and Antioxidant Properties of Secondary Metabolites from White Rose Flower  

Joo, Seong-Soo (Research Institute of Veterinary Medicine, Chungbuk National University)
Kim, Yun-Bae (Research Institute of Veterinary Medicine, Chungbuk National University)
Lee, Do-Ik (Department of Immunology, Chung-Ang University)
Publication Information
The Plant Pathology Journal / v.26, no.1, 2010 , pp. 57-62 More about this Journal
Abstract
Low-molecular-weight secondary metabolites from plants play an important role in reproductive processes and in the defense against environmental stresses or pathogens. In the present study, we isolated various volatiles and phenolic compounds from white Rosa rugosa flowers, and evaluated the pharmaceutical activities of these natural products in addition to their ability to increase survival in response to environmental stress and pathogen invasion. The DPPH and hydroxyl radical-mediated oxidation assay revealed that the white rose flower extract (WRFE) strongly scavenged free radicals in a dose dependent manner. Moreover, WRFE inhibited the growth of E. coli and fatally attacked those cells at higher concentration (>0.5 mg/mL). FITC-conjugated Annexin V stain provided further evidence that WRFE had strong antimicrobial activity, which may have resulted from a cooperative synergism between volatiles (e.g. 1-butanol, dodecyl acrylate and cyclododecane) and phenolic compounds (e.g. gallic acid) retained in WRFE. In conclusion, secondary metabolites from white rose flower hold promise as a potential natural source for antimicrobial and non-chemical based antioxidant agents.
Keywords
antimicrobial; antioxidant; genomic DNA; phenolic compounds; Rosa rugosa; volatiles;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Mayo, J. C., Tan, D. X., Sainz, R. M., Natarajan, M., Lopez-Burillo, S. and Reiter, R. J. 2003. Protection against oxidative protein damage induced by metal-catalyzed reaction or alkylperoxyl radicals: comparative effects of melatonin and other antioxidants. Biochim. Biophys. Acta. 1620:139-150.   DOI   ScienceOn
2 Nychas, G. J. E. 1995. Natural antimicrobials from plants. In: New Methods of Food Preservation, ed. by G. W. Gould, pp. 58-89. Blackie Academic and professional, Glasgow.
3 Pichersky, E. and Gang, D. R. 2000. Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Trends Plant Sci. 5:439-445.   DOI   ScienceOn
4 Sanchez-Moreno, C., Larrauri, J. A. and Saura-Calixto, F. 1999. Free radical scavenging capacity an inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res. Int. 32:407-412.   DOI   ScienceOn
5 Sikkema, J., De Bont, J. A. M. and Poolman, B. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269:8022-8028.
6 Sikkema, J., De Bont, J. A. M. and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59:201-222.
7 Strobel, G. A., Dirkse, E., Sears, J. and Markworth, C. 2001. Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147:2943-2950.   DOI
8 Vranova, E., Inze, D. and Van Breusegem, F. 2002. Signal transduction during oxidative stress. J. Exp. Bot. 53:1227-1236.   DOI   ScienceOn
9 Zhao, J., Davis, L. C. and Verpoorte, R. 2005. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv. 23:283-333.   DOI   ScienceOn
10 Hammer, K. A., Carson, C. F. and Riley, T. V. 2003. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 95:853-860.   DOI   ScienceOn
11 Harborne, J. B. 2001. Twenty-five years of ecology. Nat. Prod. Rep. 18:361-379.   DOI   ScienceOn
12 Hotta, H., Nagano, S., Ueda, M., Tsujino, Y., Koyama, J. and Osakai, T. 2002. Higher radical scavenging activities of polyphenolic antioxidants can be ascribed to chemical reactions following their oxidation. Biochim. Biophys. Acta 1572:123-132.   DOI   ScienceOn
13 Hsieh, M.-C., Shen, Y.-J., Kuo, Y.-H. and Hwang, L. S. 2008. Antioxidative activity and active components of Longan (Dimocarpus longan Lour.) flower extracts. J. Agric. Food Chem. 56:7010-7016.   DOI   ScienceOn
14 Jang, H.-W., Ka, M.-H. and Lee, K.-G. 2008. Antioxidant activity and characterization of volatile extracts of Capsicum annuum L. and Allium spp. Flavour. Fragr. J. 23:178-184.   DOI   ScienceOn
15 Karban, R., Baldwin, I. T., Baxter, K. J., Laue, G. and Felton, G. W. 2000. Communication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush. Oecologia 125:66-71.   DOI
16 Mari, M., Bertolini, P. and Pratella, G. C. 2003. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 94:761-766.   DOI   ScienceOn
17 Bishop, C. D. 1995. Antiviral activity of the essential oil of Melaleuca alternifolia (Maiden and Betche) Cheel (tea oil) against tobacco mosaic virus. J. Essent. Oil. Res. 7:641-644.   DOI
18 Dudareva, N. and Pichersky, E. 2000. Biochemistry and molecular genetic aspects of floral scents. Plant. Physiol. 122:627-633.   DOI   ScienceOn
19 Dudareva, N. and Pichersky, E. 2008. Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19:181-189.   DOI   ScienceOn
20 Argolo, A. C. C., Sant’Ana, A. E. G., Pletsch, M. and Coelho, L. C. B. B. 2004. Antioxidant activity of leaf extracts from Bauhinia monandra. Bioresour. Technol. 95:229-233.   DOI   ScienceOn
21 Carson, C. F., Mee, B. J. and Riley, T. V. 2002. Mechanism of action of Melaleuca laternifolia (tea tree) oil on staphylococcus aureus determained by time-kill, lysis, leakage and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46:1914-1920.   DOI
22 Dangl, J. L. and Jones, J. D. 2001. Plant pathogens and integrated defence responses to infection. Nature 411:826-833.   DOI   ScienceOn
23 Davidson, P. M. 1997. Chemical preservatives and natural antimicrobial compounds. In: Food microbiology fundamentals and frontiers, ed. by M. P. Doyle, L. R. Beuchat and T. J. Montville, pp. 520-556. American Society for Microbiology Press, Washington (DC).
24 De Moraes, C. M., Mescheer, M. C. and Tumlison, J. H. 2001. Caterpillar-induced nocturnal plant volatiles repel nonspecific females. Nature 410:577-580.   DOI   ScienceOn
25 Dixon, R. A. 2001. Natural products and plant disease resistance. Nature 411:843-847.   DOI   ScienceOn
26 Denyer, S. P. and Hugo, W. B. 1991. Biocide-induced damage to the bacterial cytoplasmic membrane. In: Mechanisms of action of chemical Biocides: The Society for Applied Bacteriology, Technical Series No 27, ed. by S. P. Denyer and W. B. Hugo, pp. 171-188. Oxford Blackwell Scientific Publication, Oxford.