• Title/Summary/Keyword: flow of charge

Search Result 437, Processing Time 0.024 seconds

Phenol Conversion Properties in Aqueous Solution by Pulsed Corona Discharge (펄스 코로나 방전에 의한 액체상 페놀 전환 특성)

  • Lee, Hyun-Don;Chung, Jae-Woo;Cho, Moo-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.1
    • /
    • pp.40-46
    • /
    • 2007
  • A laboratory scale experiment on phenol conversion properties by pulsed corona discharge process was carried out. Effects of operating parameters such as applied voltage, input oxygen, and electrode geometry on phenol conversion and solution properties were investigated. Electrical discharges generated in liquid phase increased the liquid temperature by heat transfer from current flow, decreased the pH value by producing various organic acids from phenol degradation, and increased conductivity by generating charge carriers and organic acids. The oxygen supply enhanced the phenol conversion through the ozone generation dissolution and the production of OH radicals. Series type electrode configuration induced more ozone production than reference type configuration because it produced gas phase discharges as well as liquid phase discharges. Therefore, the higher phenol conversion and TOC(total organic carbon) removal efficiency were obtained in series type configuration.

Numerical Study on Transfer Port Design for Scavenging Performance in Small Two-stroke Engines (소형 2행정 엔진의 전송 포트 형상에 따른 소기 성능에 대한 수치 해석적 연구)

  • Kim, Cheonghwan;Park, Sungho;Kim, Myeongkyu;Ahn, Eunsoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.28-44
    • /
    • 2020
  • In this paper, the scavenging process of various transfer ports was evaluated to improve the performance of a small two-stroke engine for unmanned aerial vehicles. Three-dimensional computational fluid dynamics simulations were performed to four transfer ports for the evaluation, and a three-phase scavenging model was developed and applied to the simulation results for the quantitative comparison of scavenging performance. the short-circuit of fresh charge was restrained and an in-cylinder turbulent kinetic energy was enhanced by changing the transfer port. Also, a difference in the scavenging for each port were confirmed by applying the three-phase model to the simulation results.

Comparison of Methods for Calculating Reactive Power Service Charge and Proposing a New Method using Reactive Power Markets (무효전력시장을 이용한 무효전력서비스 요금 산정방법의 비교 및 새로운 방안)

  • Ro, Kyoung-Soo;Choi, Joon-Ho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.78-84
    • /
    • 2006
  • As electric power systems have been moving from a vertically integrated structure to a deregulated environment, calculating reactive power service charges is a new challenging theme for market operators. This paper examines various methods for reactive power management adopted in some deregulated foreign and domestic markets and then proposes a new method to calculate reactive power service charges using a reactive power market. The reactive power market is operated based on bids from the generating sources and is settled on uniform prices by running reactive OPF programs after the day-ahead electricity market. The proposed method takes into account recovering not only the costs of installed capacity but also the lost opportunity costs incurred by reducing active power output to increase reactive power production. A numerical sample study is carried out to illustrate the processes and appropriateness of the proposed method.

A hybrid study on self-generators based on system for high-efficiency (하이브리드형 고효율 자가 발전기를 위한 시스템에 관한 연구)

  • Jeong, Yang-Kwon;Um, Tae-Hyoun;Kim, Gi-Hoon;Hun, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.897-902
    • /
    • 2011
  • This study incorporates a welder and a generator as needed while using the generator to be used as a welder is to configure the system. As such, in order to offer an integrated system to prevent the rapid charging process to manage the power state information, system configuration is the most important. Ideally, the random controls the flow of charge is ideal for that. When charging is good as long as possible, less current. However, In this study, the most ideal fusion welder and generator as required by the generator or welder can be used as a system is proposed. Specifically, the damage can be caused by carelessness, so short-circuit protection, overload protection, reverse polarity protection, automatic charging system is all about, including the ability to adjust.

Planting Design Strategies and Green Space Planning to Mitigate Respirable Particulate Matters - Case Studies in Beijing, China - (미세먼지 저감을 위한 식재기법 및 도시 녹지계획 방향 - 중국 베이징시 사례를 중심으로 -)

  • Xu, Xi-ran;Kim, Jin-Oh
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.6
    • /
    • pp.40-49
    • /
    • 2017
  • The purpose of the research is to analyze the recent cases of green space planning and planting design in Beijing, one of the cities having the worst particulate matters (PM) pollution. This study comprehensively reviewed Chinese academic literature addressing green space planning to reduce PM pollution. In addition, we conducted field observations and interviews with public officials from Beijing Municipal Bureau of Landscape Design in charge of planning and management of green spaces in Beijing. After the extensive review of literature we derived tree planting principles to mitigate the impact of PM from urban road system, residential area, and industrial district. Using the principles we evaluated the three recent cases of planting design to mitigate PM: Beijing Fuxing Road, Fu Run Residential Area and Beijing Beiqi Multipurpose Vehicle Factory. We conclude that green space planning and trees planting are not effective in mitigating negative impact of PM pollution because of inadequate selection of trees and inconsiderate planting composition. We proposed to replace the tree species with the ones capable of reducing the spread of PM, and reorganize planting compositions that consider the directions and characteristics of urban wind flow. This study suggests desirable types of tree species and planting compositions for road, residential and industrial districts, and we expect that it provides helpful guidelines for making planting design and species selection to mitigate the impact of PM in urban landscape.

The Effects of Different Membranes on the Performance of Aqueous Organic Redox Flow Battery Using Anthraquinone and TEMPO Redox Couple (안트라퀴논과 템포 활물질 기반 수계 유기 레독스 흐름 전지에서의 멤브레인 효과)

  • Lee, Wonmi;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.695-700
    • /
    • 2019
  • n this study, the evaluation of performance of AORFB using anthraquinone derivative and TEMPO derivative as active materials in neutral supporting electrolyte with various membrane types was performed. Both anthraquinone derivative and TEMPO derivative showed high electron transfer rate (the difference between anodic and cathodic peak potential was 0.068 V) and the cell voltage is 1.17 V. The single cell test of the AORFB using 0.1 M active materials in 1 M KCl solution with using Nafion 212 membrane, which is commercial cation exchange membrane was performed, and the charge efficiency (CE) was 97% and voltage efficiency (VE) was 59%. In addition, the discharge capacity was $0.93Ah{\cdot}L^{-1}$ which is 35% of theoretical capacity ($2.68Ah{\cdot}L^{-1}$) at $4^{th}$ cycle and the capacity loss rate was $0.018Ah{\cdot}L^{-1}/cycle$ during 10 cycles. The single cell tests were performed with using Nafion 117 membrane and SELEMION CSO membrane. However, the results were more not good because of increased resistance because of thicker thickness of membrane and increased cross-over of active materials, respectively.

Effect of RuO$_2$ Thin Film Microstructure on Characteristics of Thin Film Micro-supercapacitor ($RuO_2$박막의 미세 구조가 박막형 마이크로 슈퍼캐패시터의 특성에 미치는 영향)

  • Kim, Han-Ki;Yoon, Young-Soo;Lim, Jae-Hong;Cho, Won-Il;Seong, Tae-Yeon;Shin, Young-Hwa
    • Korean Journal of Materials Research
    • /
    • v.11 no.8
    • /
    • pp.671-678
    • /
    • 2001
  • All solid-state thin film micro supercapacitor, which consists of $RuO_2$/LiPON/$RuO_2$ multi layer structure, was fabricated on Pt/Ti/Si substrate using a $RuO_2$ electrode. Bottom $RuO_2$ electrode was grown by dc reactive sputtering system with increasing $O_2/[Ar+O_2]$ ratio at room temperature, and a LiPON electrolyte film was subsequently deposited on the bottom $RuO_2$ electrode at pure nitrogen ambient by rf reactive sputtering system. Room temperature charge-discharge measurements based on a symmetric $RuO_2$/LiPON/$RuO_2$ structure clearly demonstrates the cyclibility dependence on the microstructure of the $RuO_2$ electrode. Using both glancing angle x-ray diffraction (GXRD) and transmission electron microscopy (TEM) analysis, it was found that the microstructure of the $RuO_2$ electrode was dependent on the oxygen flow ratio. In addition, x- ray photoelectron spectroscopy(XPS) examination shows that the Ru-O binding energy is affected by increasing oxygen flow ratio. Furthermore, TEM and AES depth profile analysis after cycling demonstrates that the interface layer formed by interfacial reaction between LiPON and $RuO_2$ act as a main factor in the degradation of the cyclibility of the thin film micro-supercapacitor.

  • PDF

Two Stage Process Mechanism of Silica Adsorption by Soil in Adsoption Kinetics (토양의 규산 흡착 카이네틱에서 2단계 흡착 기작)

  • Lee, Sang-Eun;Jung, Kwang-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.29 no.2
    • /
    • pp.107-112
    • /
    • 1996
  • To clarify the mechanism of silica adsorption to soil, kinetic study using continuous stirred-flow method was conducted with the Luisiana soil at three pH levels (pH 5.0, 6.5, and 8.0). Silica adsorption increased continuously without showing the maximum adsorption for long enough experimental time. Kinetic curve of silica adsorption could be divided into two stage processes. The first stage process was fitted well to the following equation with highly significant correlation coefficient : $$R_{ad}=K_a*(Q_{OH}^S)^n$$ where, $R_{ad}$ is silica adsorption rate($Si\;{\mu}mal/min$). $Q_{OH}^S$ is the negative charge sites on the soil surface created by alkali titration, and $K_a$ and n are constants. The "n" value of the first stage process was 1.1. This value indicates that the silica adsorption is accomplished by the monodendate ligand bonding. The second stage process was fitted well to the following equation : $$R_{ad}=K_b*(pH)$$ where, $K_b$ is a constant. The equation indicates that the silica adsorption is not proportional to the $OH^-$ ion concentration. Rather, the increasing pattern of silica adsorption rate with the increase of $OH^-$ ion concentration would decrease exponentially.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.

Recent Progress in Air Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2007 (설비공학 분야의 최근 연구 동향 : 2007년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Shin, Dong-Sin;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.844-861
    • /
    • 2008
  • The papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during the year of 2007 have been reviewed. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environments. The conclusions are as follows. (1) The research trends of fluid engineering have been surveyed as groups of general fluid flow, fluid machinery and piping, etc. New research topics include micro nano fluid, micropump and fuel cell. Traditional CFD was still popular and widely used in research and development. Studies about fans and pumps were performed in the field of fluid machinery. Characteristics of flow and fin shape optimization are studied in the field of piping system. (2) The research works on heat transfer have been reviewed in the field of heat transfer characteristics, heat exchangers, and desiccant cooling systems. The research on heat transfer characteristics includes thermal transport in pulse tubes, high temperature superconductors, ground heat exchangers, fuel cell stacks and ice slurry systems. For the heat 'exchangers, the research on pin-tube heat exchanger, plate heat exchanger, condensers and gas coolers has been cordially implemented. The research works on heat transfer augmenting tubes have been also reported. For the desiccant cooling systems, the studies on the design and operating conditions for desiccant rotors as well as performance index are noticeable. (3) In the field of refrigeration, many papers were presented on the air conditioning system using CO2 as a refrigerant. The issues on the two-stage compression, the oil selection, and the appropriate oil charge were treated. The subjects of alternative refrigerants were also studied steadily. Hydrocarbons, DME and their mixtures were considered and various heat transfer correlations were proposed. (4) Research papers have been reviewed in the field of building facilities by grouping into the researches on heat and cold sources, air conditioning and air cleaning, ventilation and fire research including tunnel ventilation, flow control of piping system, and sound research with drain system. Main focuses have been addressed to the promotion of efficient or effective use of energy, which helps to save energy and results in reduced environmental pollution and operating cost. (5) Studies were mostly focused on analyzing the indoor environment in various spaces like cars, old tombs, machine rooms, and etc. in an architectural environmental field. Moreover, subjects of various fields such as the evaluation of noise, thermal environment, indoor air quality and development of energy analysis program were researched by various methods of survey, simulation, and field experiment.