• 제목/요약/키워드: flow loop system

검색결과 333건 처리시간 0.026초

확장 T-method에 의한 환상식 덕트시스템 해석 (Analysis of loop duct system by extended T-method)

  • 이승철;문종선;이재헌
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.389-397
    • /
    • 1998
  • A loop duct system is often found in a VAV-HVAC(variable air volume heating, ventilating and air conditioning) design. It is known that the simple T-method is not be applicable to the loop duct system and cannot be used to calculate the flow rate and the pressure drop at each duct section of the loop duct system. In this paper, the extended T-method has been developed and it is found to be applicable to the loop duct system to which the simple T-method cannot be applied. The validity of the extended T-method has been verified by using to solve for a simple, ideal loop duct system for which there exists analytical solution. In addition, the extended T-method is employed to compute the loop duct system of a real building with an area of 380$m^2$. The results show that the computed flow rate at the exit differs from the designed flow rate by a range of -13.6~43.5 %. Consequently, three design factors must be adjusted in order that the flow rate may be balanced. These include the duct sizes, in terms of their lengths and diameters, the sub-duct locations and the positioning of damper which is found upstream of the exit duct.

  • PDF

하나로 핵연료 시험 루프 주냉각수 계통의 유량 제어에 대한 유동 해석 (Flow Network Analysis for the Flow Control of a Main Cooling Water System in the HANARO Fuel Test Loop)

  • 박용철;이용섭;지대영
    • 한국유체기계학회 논문집
    • /
    • 제12권5호
    • /
    • pp.7-12
    • /
    • 2009
  • A nuclear fuel test loop(after below, FTL) is installed in the IRI of an irradiation hole in HANARO for testing the neutron irradiation characteristics and thermo hydraulic characteristics of a fuel loaded in a light water power reactor or a heavy water power reactor. There is an in-pile section(IPS) and an out-pile section(OPS) in this test loop. When HANARO is operated normally, the fuel loaded into the IPS has a nuclear reaction heat generated by a neutron irradiation. To remove the generated heat and to maintain the operation conditions of the test fuel, a main cooling water system(MCWS) is installed in the OPS of the FTL. The MCWS is composed of a main cooler, a pressurizer, two circulation pumps, a main heater, an interconnection pipe line and instruments. The interconnection pipeline is a closed loop which is connected to an inlet and an outlet of the IPS respectively. The MCWS is under a cold function test during a start-up period. This paper describes the system flow network analysis results of the flow control of a main cooling water system in the HANARO fuel test loop. It was confirmed through the results that the flow was met the system design requirements.

Thermal-hydraulic simulation and evaluation of a natural circulation thermosyphon loop for a reactor cavity cooling system of a high-temperature reactor

  • Swart, R.;Dobson, R.T.
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.271-278
    • /
    • 2020
  • The investigation into a full-scale 27 m high, by 6 m wide, thermosyphon loop. The simulation model is based on a one-dimensional axially-symmetrical control volume approach, where the loop is divided into a series of discreet control volumes. The three conservation equations, namely, mass, momentum and energy, were applied to these control volumes and solved with an explicit numerical method. The flow is assumed to be quasi-static, implying that the mass-flow rate changes over time. However, at any instant in time the mass-flow rate is constant around the loop. The boussinesq approximation was invoked, and a reasonable correlation between the experimental and theoretical results was obtained. Experimental results are presented and the flow regimes of the working fluid inside the loop identified. The results indicate that a series of such thermosyphon loops can be used as a cavity cooling system and that the one-dimensional theoretical model can predict the internal temperature and mass-flow rate of the thermosyphon loop.

Experimental investigation of two-phase natural circulation loop as passive containment cooling system

  • Lim, Sun Taek;Kim, Koung Moon;Kim, Haeseong;Jerng, Dong-Wook;Ahn, Ho Seon
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3918-3929
    • /
    • 2021
  • In this study, we experimentally investigate of a two-phase natural circulation loop that functions as a passive containment cooling system (PCCS). The experimental apparatus comprises two loops: a hot loop, for simulating containment under severe accidents, and a natural circulation loop, for simulating the PCCS. The experiment is conducted by controlling the pressure and inlet temperature of the hot loop in the range of 0.59-0.69 MPa (abs) and 119.6-158.8 ℃, respectively. The heat balance of the hot loop is established and compared with a natural circulation loop to assess the thermal reliability of the experimental apparatus, and an additional system is installed to measure the vapor mass flow rate. Furthermore, the thermal-hydraulic characteristics are considered in terms of a temperature, mass flow rate, heat transfer coefficient (HTC), etc. The flow rate of the natural circulation loop is induced primarily by flashing, and a distortion is observed in the local HTC because of the fully develop as well as subcooled boiling. As a result, we present the amount of heat capacity that the PCCS can passively remove according to the experimental conditions and compared the heat transfer performance using Chen's and Dittus-Boelter correlation.

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

Time-Varying Hemodynamic Characteristics Simulation using Computerized Mock Circulatory Loop System with Servo Flow Regulator

  • Moon, Youngjin;Son, Kuk Hui;Choi, Jaesoon
    • 대한의용생체공학회:의공학회지
    • /
    • 제36권6호
    • /
    • pp.264-270
    • /
    • 2015
  • A mock circulatory loop system has been developed to construct a simulator for trainees in cardiopulmonary bypass systems or to simulate a test environment for cardiac-assist devices. This paper proposes a computerized mock circulatory loop system whose node is modularized by using a servo control flow regulator to simulate dynamic change of the hemodynamic status. To observe the effect of time-varying resistance, one with hemodynamic properties, the proposed system replicates the planned cross-sectional areas of the outlet of a ventricular assist device in terms of voltage input of a servo valve. The experiment is performed (1) for steady-input commands of selected area sizes and (2) for dynamic commands such as monotonous increase and decrease, and oscillatory functions of the voltage input, and a computer program based on LabVIEW (National Instruments, Austin, USA) processes every measured data and control command to the servo valve. The results show that the pressure and flow at the target points with respect to time-varying resistance match intuitive estimation: the pressure at the outlet and the pressure drop between both sides of the valve increased and the flow at the outlet decreased for increased resistance.

극저온 자연순환회로의 가속 및 저중력 구간 유량 분석 (Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section)

  • 백승환;정영석;조기주
    • 한국추진공학회지
    • /
    • 제23권5호
    • /
    • pp.43-52
    • /
    • 2019
  • 극저온 유체를 사용하는 발사체는 극저온 유체의 자연순환회로를 이용하여 발사체의 엔진 입구를 냉각한다. 자연순환회로의 질량유량은 순환시스템을 구성하는 배관의 길이 및 직경과 시스템으로 들어오는 열유입에 의하여 결정된다. 극저온 유체의 자연순환회로의 순환 검증 및 질량유량 측정을 위하여 실험을 진행하였으며, 이론적 계산 결과와 비교하였다. 비교 결과 12%의 오차가 있음을 확인하였다. 이 결과를 바탕으로 발사체 상단에서 저중력 구간 및 가속 구간에서의 자연순환 질량유량을 예측한 내용을 포함한다. 가속구간에서는 산화제탱크가 100 kPa 내외로 유지하는 것이 자연순환유량 증가에 이로웠으며, 저중력구간에서는 중력가속도의 크기에 따른 최적 압력으로 조절해야 자연순환유량의 최고값을 유지할 수 있었다.

환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구 (Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop)

  • 이동엽;김윤기;김현동;김경천
    • 한국가시화정보학회지
    • /
    • 제9권4호
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

지하수 수위가 개방형 지열시스템 성능에 미치는 영향에 관한 연구 (A Study of the Influence of Groundwater Level on the System Performance of Open Loop Geothermal System)

  • 김진상;남유진
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.1-10
    • /
    • 2013
  • Open loop geothermal heat pumps have great potential where the groundwater resources are sufficient. Performance of open loop geothermal heat pump systems is considered higher than that of ground source heat pumps. Head and power calculation of submersible pumps, heat pump units, and piping are numerically based on regression data. Results shows that the system performance drops as the water level drops, and the lowest flow rates generally achieve the highest system COPs. The highest achievable cooling system COPs become 6.34, 6.12, and 5.95 as the groundwater levels are 5m, 15m, and 25m. The highest heating system COPs also become 4.59, 4.37, and 4.20. Groundwater level and submersible pump selection greatly influence the system performance of open loop geothermal heat pumps. It needs to be analysed during the design process of open loop geothermal heat pump system, possibly with analysis tools that include wide range of pump product data.

Program development and preliminary CHF characteristics analysis for natural circulation loop under moving condition

  • Gui, Minyang;Tian, Wenxi;Wu, Di;Chen, Ronghua;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • 제53권2호
    • /
    • pp.446-454
    • /
    • 2021
  • Critical heat flux (CHF) has traditionally been evaluated using look-up tables or empirical correlations for nuclear power plants. However, under complex moving condition, it is necessary to reconsider the CHF characteristics since the conventional CHF prediction methods would no longer be applicable. In this paper, the additional forces caused by motions have been added to the annular film dryout (AFD) mechanistic model to investigate the effect of moving condition on CHF. Moreover, a theoretical model of the natural circulation loop with additional forces is established to reflect the natural circulation characteristics of the loop system. By coupling the system loop with the AFD mechanistic model, a CHF prediction program called NACOM for natural circulation loop under moving condition is developed. The effects of three operating conditions, namely stationary, inclination and rolling, on the CHF of the loop are then analyzed. It can be clearly seen that the moving condition has an adverse effect on the CHF in the natural circulation system. For the calculation parameters in this paper, the CHF can be reduced by 25% compared with the static value, which indicates that it is important to consider the effects of moving condition to retain adequate safety margin in subsequent thermal-hydraulic designs.