DOI QR코드

DOI QR Code

극저온 자연순환회로의 가속 및 저중력 구간 유량 분석

Analysis of the Flow Rate for a Natural Cryogenic Circulation Loop during Acceleration and Low-gravity Section

  • Baek, Seungwhan (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Jung, Youngsuk (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute) ;
  • Cho, Kiejoo (Launcher Propulsion System Team, KSLV-II R&D Head Office, Korea Aerospace Research Institute)
  • 투고 : 2018.12.26
  • 심사 : 2019.09.10
  • 발행 : 2019.10.01

초록

극저온 유체를 사용하는 발사체는 극저온 유체의 자연순환회로를 이용하여 발사체의 엔진 입구를 냉각한다. 자연순환회로의 질량유량은 순환시스템을 구성하는 배관의 길이 및 직경과 시스템으로 들어오는 열유입에 의하여 결정된다. 극저온 유체의 자연순환회로의 순환 검증 및 질량유량 측정을 위하여 실험을 진행하였으며, 이론적 계산 결과와 비교하였다. 비교 결과 12%의 오차가 있음을 확인하였다. 이 결과를 바탕으로 발사체 상단에서 저중력 구간 및 가속 구간에서의 자연순환 질량유량을 예측한 내용을 포함한다. 가속구간에서는 산화제탱크가 100 kPa 내외로 유지하는 것이 자연순환유량 증가에 이로웠으며, 저중력구간에서는 중력가속도의 크기에 따른 최적 압력으로 조절해야 자연순환유량의 최고값을 유지할 수 있었다.

Cryogenic propellant rockets utilize a natural circulation loop of cryogenic fluid to cool the engine inlet temperature before launch. The geometric information about the circulation system, such as length and diameter of the pipes and the heat input to the system, defines the mass flow rate of the natural circulation loop. We performed experiments to verify the natural circulation mass flow rate and compared the results with the analytical results. The comparison of the mass flow rate between experiments and numerical simulations showed a 12% offset. We also included a prediction of the natural circulation flow rate in the low-gravity section and in the acceleration section in the upper stage of the launch vehicle. The oxygen tank should have 100 kPa(a) of pressure in the acceleration section to maintain a high flow rate for the natural circulation loop. In the low-gravity section, there should be an optimal tank pressure that leads to the maximum natural circulation flow rate.

키워드

참고문헌

  1. Jung, Y.S., Lim, S.H., Cho, G.S., and Oh, S.H., "Overview of the Propulsion System for KSLV-II," The Korean Society for Aero-nautical & Space Sciences Conference, Jeju, Korea, pp. 269-275, 2012.
  2. Kim, J.C., Ha, K.S., Park, R.J., Kim, S.B., and Hong, S.W., "Loop Anlaysis of a Natural Circulation Two-phase Flow under an External Reacter Vessel Cooling," International Communications in Heat and Mass Transfer, Vol. 35, Issue 8, pp. 1001-1006, 2008. https://doi.org/10.1016/j.icheatmasstransfer.2008.05.003
  3. Ha, K., Cheung, F.B., Song, J., Park, R.J., and Kim, S.B., "Prediction of Boiling-Induced Natural-Circulation Flow in Engineered Cooling Channels," Nuclear Technology, Vol. 181, Issue 1, p. 196-207, 2013. https://doi.org/10.13182/NT13-A15767
  4. Ha, K.S., Cheung, F.B., Park, R.J. and Kim, S.B., "Evalulations of Two-phase Natural Circulation Flow Induced in the Reactor Vessel Annular Gap under ERVC Conditions," Nuclear Engineering and Design, Vol. 253, pp. 114-124, 2012. https://doi.org/10.1016/j.nucengdes.2012.08.004
  5. Trucks, H.F. and Randolph, W.O., "Analytical and Experimental Investigation of Thermal and Helium Lift-Pumping Recirculation Systems," Advances in Cryogenic Engineering, Vol. 10, pp. 341-352, 1965. https://doi.org/10.1007/978-1-4684-3108-7_41
  6. Kwon, O.S., Cho, N.K., Jeong, Y.G., and Cho, I.H., "Performance Analysis and Design Factor of Recirculation Pipe for LOX Conditioning," Aerospace Engineering and Technology, Vol. 4, No. 1, pp. 196-202, 2005.
  7. Gartia, M.R., Vijayan, P.K., and Pilkhwal, D.S., "A Generalized Flow Correlation for Two-phase Natural Circulation Loops," Nuclear Engineering and Design, Vol. 236, Issue 17, pp. 1800-1809, 2006. https://doi.org/10.1016/j.nucengdes.2006.02.004
  8. Rao, N.M., Sekhar, C.C., Maiti, B., and Das, P.K., "Steady-state Performance of a Two-phase Natural Circulation Loop," International Communications in Heat and Mass Transfer, Vol. 33, Issue 8, pp. 1042-1052, 2006. https://doi.org/10.1016/j.icheatmasstransfer.2006.04.012