최근 지속적이고 치명적인 데이터베이스에 대한 공격성향은 보안 정책과 유사한 발전형태를 가지고 비례적으로 진보하고 있다. 폐쇄적 네트워크에서 생성된 정보에 대한 접근제어 기반의 방어기법과 제한된 접근경로에 대한 공격을 과거 축적되고 학습되어진 공격패턴을 기반으로 많은 시스템과 데이터베이스가 침해당하는 사례가 늘고 있다. 따라서 본 논문 연구를 통하여 제한된 인증과 접근권한에 대한 안정성 확보를 위해 이원화된 VM(Virtual Machine)을 탑재한 가상 침해 패턴 시스템 기반으로 공격정보와 형태를 분리하고 공격 네트워크에 대한 침해 패턴 집중관리를 통해 침해를 차단하는 시스템을 제안하고 최종 데이터베이스를 방어하는 실험과 최적의 방어 기법 및 보안 정책을 구현하기 위한 메커니즘을 개선코자 한다
프로그래밍은 문제분석, 논리적 사고력, 절차적 문제해결과 같은 다양한 능력을 요구하므로 많은 학생들이 어려워하고 있다. 본 논문에서는 알고리즘의 개념을 쉽게 정립할 수 있도록 알고리즘 시각화 시스템을 이용하여 교육한 후 학업성취도 및 설문평가를 통하여 시스템의 효용성을 분석하였다. 평가를 위해 3개 대학의 프로그래밍과 알고리즘 교과목을 수강하는 학생들을 2집단 각각 6팀으로 분류하여 교육을 실시하였다. 알고리즘 시각화 시스템을 이용하여 교육을 적용한 집단은 비적용집단 보다 학업성취도가 17.4점 이상 높게 나타났다. 또한 적용집단에 설문조사결과 흥미도, 집중도, 이해도, 효과성, 편리성이 높게 나타났다.
수도분야에서는 정수장 및 관말 관로 상의 전 공정에서 유량, 압력, 수질, 수위 등 다양한 데이터를 수집하고 있다. 수집되는 데이터는 각 정수장 DB에 저장되며, 권역별 DB에서 합쳐져 수자원공사 본사의 DB 서버에 최종 저장된다. 측정기기가 데이터를 측정하거나 여러 과정에 걸쳐 데이터가 통신될 때 다양한 이상 데이터가 발생할 수 있으며 크게 결측 데이터와 오측 데이터로 분류할 수 있다. 각각의 이상 데이터의 발생원인은 상이하다. 따라서 오측 및 결측 데이터를 검출하는 방식에는 차이가 있으나 실제 이를 정제하는 방식은 동일하다. 본 연구에서는 딥러닝 알고리즘의 일종인 LSTM(Long Short Term Memory) 방식을 적용하여 오 결측 데이터를 자동으로 정제할 수 있는 프로그램에 대하여 고찰한다.
Purpose: This study aimed at developing an Artificial Neural Network (ANN) model for predicting the amount of cooling energy consumption of the variable refrigerant flow (VRF) cooling system by the different set-points of the control variables, such as supply air temperature of air handling unit (AHU), condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. Applying the predicted results for the different set-points, the control algorithm, which embedded the ANN model, will determine the most energy efficient control strategy. Method: The ANN model was developed and tested its prediction accuracy by using matrix laboratory (MATLAB) and its neural network toolbox. The field data sets were collected for the model training and performance evaluation. For completing the prediction model, three major steps were conducted - i) initial model development including input variable selection, ii) model optimization, and iii) performance evaluation. Result: Eight meaningful input variables were selected in the initial model development such as outdoor temperature, outdoor humidity, indoor temperature, cooling load of the previous cycle, supply air temperature of AHU, condenser fluid temperature, condenser fluid pressure, and refrigerant evaporation temperature. The initial model was optimized to have 2 hidden layers with 15 hidden neurons each, 0.3 learning rate, and 0.3 momentum. The optimized model proved its prediction accuracy with stable prediction results.
본 연구의 목적은 COVID-19 상황에서 간호대학생의 그릿, 회복탄력성, 학업적 자기효능감, 소진의 정도를 파악하고 소진에 영향을 미치는 요인을 확인하기 위함이다. 2021년 5월 11일부터 5월 25일까지 G시 소재 대학에 재학 중인 간호대학생 3학년 155명을 대상으로 하였다. 자료분석은 t-test, ANOVA, Scheffe, Kruskal-Wallis test, Pearson's correlation, 다중회귀분석으로 분석하였다. 통계학적으로 소진은 그릿, 회복탄력성, 학업적 자기효능감과 유의한 역 상관관계를 보였다. 소진에 대한 영향요인은 회복탄력성, 전공만족도, 학업적 자기효능감, 임상실습만족도로 총 변화량의 60%를 설명하였다. 본 연구를 바탕으로 COVID-19 상황에서 간호대학생의 소진을 감소시키기 위해 회복탄력성, 전공만족도, 학업적 자기효능감, 임상실습만족도를 높이기 위한 전략이 필요하다.
컴퓨터 구조의 연구 결과, 특정 영역의 하드웨어를 개발하는 과정에서 가격 대 에너지 성능의 획기적인 개선이 이뤄진다고 알려져 있다. 본 논문은 인공신경망(NN)의 추론을 가속화시킬 수 있는 텐서 처리부(TPU) ASIC에 대한 분석을 수행하였다. 텐서 처리부의 핵심장치는 고속의 연산이 가능한 MAC 행렬곱셈기와 소프트웨어로 관리되는 온칩 메모리이다. 텐서 처리부의 실행모델은 기존의 CPU와 GPU의 실행모델보다 인공신경망의 반응시간 요구사항을 제대로 충족시킬 수 있으며, 수많은 MAC과 큰 메모리를 장착함에도 불구하고 면적이 작고 전력 소비가 낮다. 텐서플로우 벤치마크 프레임워크에 대하여 텐서 처리부를 활용함으로써, CPU 또는 GPU보다 높은 성능과 전력 효율을 나타낼 수가 있다. 본 논문에서는 텐서 처리부를 분석하고, 파이썬을 이용하여 모델링한 OpenTPU에 대하여 모의실행을 하였으며, 그 핵심장치인 행렬 곱셈부에 대한 합성을 시행하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권10호
/
pp.3729-3749
/
2021
At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.
주가는 그 기업의 미래 가치의 척도이기 때문에 주가를 분석할 때 기업의 성장성인 매출과 이익 등을 고려하여 주식을 투자한다. 기관투자자들은 종목 선정 기준을 잡기 위해서 현재 산업의 트렌드와 거시경제 지표를 보고 성장 가능한 관련 분야를 먼저 정하고 관련 기업을 선정한 후 기업에 대한 분석을 하고 목표가를 설정 후에 매수를 하고 목표가에 도달하면 매도하는 방식으로 주식 매매를 실시한다. 하지만, 일반 개인 투자자들은 경제에 대한 지식이 기관이나 외국인 투자자에 비교하여 부족하고, 기업에 대한 재무재표 분석이나 성장성에 대한 분석 없이 전문가나 지인의 추천종목을 따라 투자를 하여 기관투자자나 외국인 투자자들 보다 수익률 면에서 낮은 편이다. 따라서, 본 연구에서는 기업의 성장성인 매출과 이익 등을 고려한 지표인 ROE를 분석하여 저평가된 종목을 선택하고, 선택된 종목의 주가 흐름을 딥러닝 알고리즘을 통하여 예측하는 연구방법을 제안하여 투기가 아닌 건전한 투자에 도움이 되기 위해 본 연구를 진행한다.
코로나19의 영향으로 온라인 활동이 늘어나면서 인터넷 접속량도 늘어나고 있다. 하지만 악의적인 사용자에 의해서 네트워크 공격도 다양해지고 있으며 그중에서 DDoS 공격은 해마다 증가하는 추세이다. 이러한 공격은 침입 탐지 시스템에 의해서 탐지되며 조기에 차단할 수 있다. 침입 탐지 알고리즘을 검증하기 위해 다양한 데이터 세트를 이용하고 있으나 본 논문에서는 최신 트래픽 데이터 세트인 CICIDS2017를 이용한다. 의사 결정 트리를 이용하여 DDoS 공격 트래픽을 분석하였다. 중요도가 높은 결정적인 속성(Feature)을 찾아서 해당 속성에 대해서만 의사 결정 트리를 진행하여 정확도를 확인하였다. 그리고 위양성 및 위음성 트래픽의 내용을 분석하였다. 그 결과 하나의 속성은 98%, 두 가지 속성은 99.8%의 정확도를 각각 나타냈다.
이 논문은 League of Legends (LOL) 게임의 승패를 예측하기 위하여 Deep Neural Network Model 시스템을 제안한다. 이 모델은 다양한 LOL 빅데이터를 활용하여 TensorFlow 의 Keras에 의하여 설계하였다. 연구 방법으로 한국 서버의 챌린저 리그에서 행해진 약 26000 경기 데이터 셋을 분석하여, 경기 도중 데이터를 수집하여 그 중에서 드래곤 처치 수, 챔피언 레벨, 정령, 타워 처치 수가 게임 결과에 유의미한 영향을 끼치는 것을 확인하였다. 이 모델은 Sigmoid, ReLu 와 Logcosh 함수를 사용했을 때 더 높은 정확도를 얻을 수 있었다. 실제 LOL의 프로 게임 16경기를 예측한 결과 93.75%의 정확도를 도출했다. 게임 평균시간이 34분인 것을 고려하였을 때, 게임 중반 15분 정도에 게임의 승패를 예측할 수 있음이 증명되었다. 본 논문에서 설계한 이 프로그램은 전 세계 E-sports 프로리그의 활성화, 승패예측과 프로팀의 유용한 훈련지표로 활용 가능하다고 사료된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.