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Abstract 
 

At present, deep convolution network-based salient object detection (SOD) has achieved 
impressive performance. However, it is still a challenging problem to make full use of the 
multi-scale information of the extracted features and which appropriate feature fusion method 
is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary 
network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel 
connection feature enhancement module (PFEM) for each layer of feature extraction, which 
improves the feature density by connecting different dilated convolution branches in parallel, 
and add channel attention flow to fully extract the context information of features. Then the 
adjacent layer features with close degree of abstraction but different characteristic properties 
are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise 
of the features. Besides, in order to refine the features effectively to get more accurate object 
boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module 
(AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and 
then combines them with the output of AAM. The outputs of AAM_D features with semantic 
information and spatial detail obtained from each feature are used as salient prediction maps 
for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets 
demonstrate that the proposed method outperforms similar previous methods. 
 
 
Keywords: Salient Object Detection, Deep Learning, Convolutional Neural Network, 
 Multi-scale Information, Multi-level Feature Fusion  
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  1. Introduction 

Visual saliency detection is designed to detect the entire objects in the images that most 
attract people’s attention [1]. In recent years, many researchers have studied this topic, and it 
is a very important preprocessing operation in computer vision tasks such as image retrieval 
[2], scene classification [3], target tracking [4], and person re-identification [5].  

Recently, with the rapid development of machine learning technology, the use of deep 
learning and CNN to solve various image processing problems has made good achievements 
[6]. Some researchers have also applied the full convolution network (FCN) to saliency 
detection [7-9], FCN is adopted to build models to obtain high-level semantic information for 
SOD. Some previous SOD methods [10-12] use a series of convolutional with single-scale and 
max pooling operations to obtain deep features, in which the receptive field of features is 
limited due to frequent pooling operations in convolution neural networks. With that reason 
and the scale and position of salient objects are variable, the structural information of images 
is often lost, resulting in inaccurate detection of target boundary areas. Multi-scale convolution 
features can be added to the design of saliency detection model to obtain better salient objects 
areas and structural characteristics. For example, methods such as [13-15] extend the spatial 
pyramid pooling [16] to extract multi-scale context information of the image. By using 
convolution kernels with atrous, the receptive field can be enlarged by atrous spatial pyramid 
pooling (ASPP). However, it only realizes the feature change and integration in space. Besides, 
the resolution of features on the spatial scale axis is not dense enough either. When the scene 
is complex, the extracted features may not be able to capture salient objects and their boundary 
accurately. To solve the above problems, we proposed parallel connection feature 
enhancement module (PFEM), which captures multi-scale context information by realizing 
the feature connection between space and channel in the multi-scale region of the feature maps. 

In addition, most of the existing SOD methods are based on the encoder-decoder 
architecture [9, 10, 17, 18, 19]. From the point of view of the fusion method of different 
features, skip connection [7] is used to introduce features of the early encoding layers into the 
later decoding layer. It is indeed possible to recover the spatial precision by the earlier feature 
representation, which may be lost and blurred at the deeper layer. If only a single layer feature 
is fused into the decoding layer to mark the categories in the image, it may lead to some 
ambiguous representations in the decoding process and reduce the prediction quality. It is 
known that, in general, high-level features do not contain fine spatial details. As shown in Fig. 
1(a), the information conveyed cannot express the target's detail of limbs and "round" head 
shape, which will cause terrible errors in identifying the target shape as "human". On the other 
hand, although the low-level features can obtain sharp boundaries, they cannot accurately 
capture salient objects. For Fig. 1(b), in addition to the nearby "car" highlighted, the outline 
of the distant "island" is also extracted. Therefore, in this paper, the adjacency auxiliary 
module (AAM) is proposed to process the feature information of the two adjacent layers. The 
latter layer’s information may distinguish between the azimuth and the rough outline of the 
target, and the features of the former layer can refine the accuracy of the boundary of the target. 
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(a) 

 

 
(b) 

Fig. 1. Visualization of high-and low-level feature prediction (Map obtained only by using a single-
layer information. (a) Visualization of failure to get fine detail (b) Visualization of failure to get fine 

semantic feature) 
 

To validate the performance of our proposed adjacency assistant network (AANet), we 
show experimental results on six popular SOD datasets. A series of ablation experiments were 
conducted to assess the contribution of each module. From the quantitative metric and 
visualizations of the experimental results, it can be seen that our adjacent auxiliary network 
(AANet) can obtain better saliency maps compared to the previous state-of-the-art methods. 
In short, our main contribution can be summed up as:  

1) We propose an adjacent auxiliary network (AANet) based on multi-scale feature fusion, 
which includes parallel connection feature enhancement module (PFEM), adjacent auxiliary 
module (AAM), and adjacent decoder module (AAM_D).  

2) The PFEM has better multi-scale extraction ability by combining channel attention and 
multi-scale features. What differs from the ASPP module is that it not only focuses on the 
spatial scale transformation, but also connects the channel attention features and makes serial 
connections between the branches, which can obtain more dense features. 

3) We design AAM to enable the complementary fusion of information between the two 
adjacent layers of features with different characteristics. So that semantic ambiguity and noise 
in the features can be suppressed and explicit confidence can be provided for the correct 
semantic target detection. On the basis of AAM, we proposed adjacency decoding module 
(AAM_D), which fully integrates and refines the obtained features, and achieves the goal of 
refining the salient objects.  

4) Our network adopts multi-level feature joint supervision to improve the optimization 
ability. The experimental results show that our AANet has good performance on six salient 
detection datasets, which verifies the superiority and effectiveness of the proposed method. 

The following paragraphs of this paper are organized as follows: Section 2 summarizes the 
related works. Section 3 describes the salient object detection framework and specific details 
of the AANet. Section 4 discusses the performance of our model compared with the previous 
state-of-the-art methods and Section 5 is the conclusion of this paper. 

2. Related Work 
Conventional salient detection methods are mainly based on low-level hand-crafted features, 
such as color contrast [20], background contrast [21], center prior [22], and so on. Wei et al. 
[23] use two low-level features of color and luminance to calculate the contrast between the 
current pixel and its neighborhood of different sizes, to determine the salient value of the pixel. 
In addition, researchers build graph models to calculate the salient prediction of image pixels 
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[24, 25, 26]. For example, in [25], seeds for manifold sorting are obtained by using background 
weight maps, and a third-order smoothness structure is also designed to strengthen the 
performance of manifold sorting. However, these methods which only focus on low-level 
features cannot capture the rich semantic information in the image, and the detection in 
complex scenes may fail.  

Recently, SOD methods using deep neural networks have developed rapidly. Convolution 
neural network (CNN) is used to extract multi-level and multi-scale features, so that the model 
can capture the salient area accurately, and has a good expression in speed and performance. 
Inspired by image semantic segmentation, Zhang et al. [17] introduced FCN network 
framework in semantic segmentation into saliency detection and achieved better detection 
results. Lee et al. [27] proposed a network framework combining low-level features by 
handcrafted and high-level features by backbone network, and then combines them to detect 
the salient maps by concatenation and convolution. Zhang et al. [12] use an encoder-decoder 
framework for better saliency prediction. To learn uncertain features, a ‘redefined dropout’ is 
added to the encoder and the decoder is also designed with hybrid up-sampling scheme to 
avoid checkerboard artifacts. However, the simplest single-stream transmission methods may 
gradually lose the spatial local information of the image due to the deepening of the network 
in the process of feature extraction, which will affect the final detection results, especially for 
the inaccurate detection of the salient target boundary. 

To cope with the above problems, many algorithms adopt the way of side fusion. The so-
called side fusion network refers to the fusion of multi-layer feature information of the 
backbone network for saliency prediction. Hou et al. [7] introduced the short connection to the 
skip-layer structures to detect salient maps, and added the output from higher level to the 
shallow output using short connection. In this way, lower side output can better locate salient 
areas with the help of higher-level features as well as lower-level features enrich the details of 
deeper side outputs. Zhang et al. [28] proposed to aggregate multi-level convolutional features 
for saliency detection. All levels of feature maps are integrated into multiple resolutions and 
rough semantic and detail information are combined to predict saliency maps. Wang et al. [29] 
proposed global recurrent localization network, which uses multi-scale convolution kernels to 
extract different scales context information, and then connects the information to decoding 
layers. And local context information for each spatial position can be adaptively learned 
because of the local boundary refinement network. Zhang et al. [30] designed symmetrical 
fully convolutional neural networks to learn complementary saliency features with the 
guidance of lossless feature reflection. This side fusion method is similar to the principle of 
U-Net [31] in semantic segmentation, which gradually fuses the rich spatial detail features of 
the bottom layers in the decoding stage to improve the fineness of the salient maps. Inspired 
by pyramid scene parsing network [32], Liu et al [33] designed a U-shaped architecture based 
on feature pyramid structure according to top-down and bottom-up design, which uses 
pyramid pooling module to capture global guidance information and help more accurately 
locate the salient objects. Zhang et al. [13] proposed a feature extraction module for multi-
level feature mapping, and then design a bi-directional structure to deliver messages between 
features of different layers. The characteristics of representative traditional and CNN-based 
SOD models are summarized in Table 1. In short, how to obtain multi-layer information and 
multi-scale information and integrate all this information more effectively is a very important 
point in salient object detection. 
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Table 1. Characteristics of different methods for SOD 
Algorithm Type Characteristics 

RCRR [24] traditional 
models 

saliency reversion correction (RC) process, regularized random walk 
ranking model 

DSC [26] traditional 
models 

using deformed smoothness constraint to find low contrast object in the 
label propagation model, refined map to refined coarse map 

BMP [13] CNN-based  using convolution layers with various reception fields, inter-level exchange 
through a gated bi-directional pathway 

Amulet [28] CNN-based  recursively embedding multi-level features maps 
ELD [27] CNN-based  concatenating high-level and encoded hand-crafted feature distance map 

LFR [30] CNN-based  using lossless feature reflection (FR) to guide a symmetrical FCN, weighted 
structural loss 

C2Snet [18] CNN-based  multi-task learning, adding a SOD branch to a contour detection model, 
contour and SOD branches progressively supervise and update each other 

UCF [12] CNN-based  FCN-based, R-dropout operation for uncertainty in encoder, hybrid up-
sampling for smoothing 

Capsal [19] CNN-based  integrating semantic context from a captioning network  

RFCN [10] CNN-based  recurrent fully convolutional networks, and use segmentation tasks as 
supervision for training 

 
Inspired by the above work, firstly, in order to obtain better multi-scale information, we 

propose PFEM, based on ASPP, to parallel add channel extraction features to transform on the 
spatial scale to get better multi-scale features. Then we designed the AAM, which 
complements and suppresses each other by making use of the different properties of low and 
high-level features to remove fuzzy interference information. This can overcome the 
ambiguity problem caused by the previous algorithm framework such as [29, 30, 33, 34] which 
directly integrates the single-layer features of the coding layer into the decoder for decoding. 
Finally, we designed the AAM_D to effectively use the refined features of multi-layer and 
multi-scale for saliency detection, so that the detection results have better accuracy of salient 
target area location and boundary segmentation. 

3. The proposed method 

3.1 AANet Network Structure 
In this work, our model is based on the encoder-decoder architecture. ResNet-50 converges 
quickly and has small parameters relatively, for which we adopt it as the backbone network. 
To achieve the task of saliency detection, we have made some modifications to it. The last 
pooling layer and the fully connected layer are removed. The input image with size of H×W 
is fed into the backbone network to obtain multi-level feature mapping: {Conv-1, Res-2, Res-
3, Res-4, Res-5}. The feature mapping 𝑓𝑓5  obtained from Res-5 has the smallest spatial 
dimension 𝐻𝐻

25
 × 𝑊𝑊

25
. Specifically, according to the five feature maps with different resolutions, 

in order to further extract the scale information contained in different features, we designed 
the parallel connection feature enhancement module (PFEM). The output channel of different 
feature maps after reprocessing by the PFEM module is 128. Then, the adjacency auxiliary 
module (AAM) is designed to further obtain clear boundaries and consistent semantics. The 
feature map 𝑓𝑓5 is transformed into a feature map with 256 channels by a 3×3 convolution 
operation, and we take it as the next layer input of the first adjacent auxiliary module. Finally, 
the adjacency auxiliary features and the feature mapping from the previous encoding layer are 
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fused by the adjacency decoder (AAM_D). The features from the last decoding layer are used 
to obtain our salient maps by 1×1 convolution layer and up-sampling operation. In addition, 
in order to better learn the loss, we output all the feature maps obtained from the four decoding 
modules as an auxiliary loss. The overall structure is illustrated in Fig. 2. 
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Fig. 2. The proposed AANet network structure 

3.2 Parallel Connection Feature Enhancement Module 
The capture of semantic information is very important for salient object detection. The simple 
convolution neural network model learns features of objects by stacking multiple convolution 
layers and pooling layers. There are large variations in the scales and position of salient objects 
in different images. If we directly encode and decode the features extracted from the backbone 
network to generate salient targets. The feature extraction is only a single-scale convolution 
and merging operation, which may result that some complex scene problems are handled 
poorly, leading to the problem of information loss. Some works have been done to extract 
multi-scale features from spatial pyramid pools and apply them to saliency detection, which 
uses dilated convolution of different sizes of kernels to obtain feature maps with different scale 
receptive fields. However, the insertion of "holes" will lead to the problem of sparse features. 
In addition, these transformations only extract spatial information from different channels, and 
may not be able to accurately convey the channel features. In order to solve these two problems, 
PFEM is designed along the backbone to learning multi-scale semantic information. 
The module contains multiple dilated convolutions (we have adopted parallel connections for 
several dilated convolutions) and channel attention mechanisms. We extract five levels of 
feature mapping from the ResNet-50 network. For each level of feature maps, different scale 
information can be obtained by dilated convolution with different dilated rates. The output of 
the dilated convolution layer at the prior scale variation is fed to the next unexecuted dilated 
convolution branch, and then calculate the scale of another dilated convolution branch after 
element-wise addition. The previous multi-scale feature extraction methods, such as ASPP 
[16], use four dilated convolution layers to expand the receptive field without losing resolution 
and increasing the amount of computation. However, when the dilated rate is relatively large, 
the 3×3 filter no longer captures the global context effectively. So that our convolution kernels 
are not all the size of 3×3. We set the convolution kernels of the first dilated convolution to 
1×1 and the other three to 3×3. In addition, our dilated rates are set to 1, 3, 5, 7, while those of 
ASPP are often 6, 12, 18, 24. Furthermore, as shown in Fig. 3, we do not simply adopt four 
ways to obtain different scale information {𝑓𝑓1𝑐𝑐, 𝑓𝑓2𝑐𝑐 , 𝑓𝑓3𝑐𝑐 , 𝑓𝑓4𝑐𝑐}. We add the scale features 
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obtained from the previous branches to the input feature and then carry out the next scale 
transform. Through such feature connection, the neurons of each feature map can extract and 
purify semantic information from multiple scales. In this way, the feature information will be 
denser in terms of feature resolution, and the receiving field will be larger. 
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Fig. 3. Structure of PFEM 

 
 
The above operation improves the effectiveness of multi-scale feature extraction in the 

spatial domain. Besides, we add channel-wise attention to make the feature pay more attention 
to the salient target from the channel. As shown in Fig. 3, the weight information on the 
channel is obtained by pooling, channel convolution, and sigmoid of the input feature. At the 
same time, it can be seen that the number of the input feature’s channel is changed to 128 
through a convolution operation before entering into the calculation of channel feature, the 
reason of which is to avoid the layer with fewer channels being submerged by the layer with 
more channels. What’s more, it was found in our test that the target location was usually very 
accurate when the salient detection based on the ResNet-50 backbone network was carried out, 
while the target boundary detection was often not accurate enough. Therefore, when designing 
PFEM, we should appropriately reduce the number of high-level features channels and 
appropriately increase the number of low and middle-level features channels, so that the 
semantic location and boundary detection of significant targets can achieve better performance 
at the same time, and the computation and network parameters can also be reduced. And finally, 
we combine several features through cross-channel cascading to get enhanced features. The 
calculation formula of the whole process of PFEM can be written as: 
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where 𝑓𝑓𝑖𝑖 is the feature mapping of each layer obtained from the backbone network, 𝑓𝑓𝑖𝑖𝑑𝑑 is the 
output of each dilated convolution branch, 𝑓𝑓𝑖𝑖𝑐𝑐𝑐𝑐 indicates the output of the channel attention 
branch, and 𝑓𝑓𝑖𝑖𝑐𝑐  is the output of PFEM, Aconv_1()  is dilated convolution with different 
convolution kernels and dilated rates, ReLU()  and 𝐵𝐵𝐵𝐵()  are ReLU nonlinear and batch 
normalization operations respectively, Concat() is a cascading operation at the channel level. 
Details of the size and number of channels are shown in Table 2. 
 

Table 2. Details of PFEM 
Block Input Layer Channel size Output 

FEM1 Conv-1 
(72*72*64) Aconv*4+CA 

64→32,96→32, 
96→32,96→32, 
64→128 

72*72*256 

FEM2 
Res-1 

（72*72*256） 
Aconv*4+CA 

256→32,288→32, 
288→32,288→32, 
256→128 

72*72*256 

FEM3 Res-2 
（36*36*512） Aconv*4+CA 

512→32,544→32, 
544→32,544→32, 
512→128 

36*36*256 

FEM4 Res-3 
（18×18*1024） Aconv*4+CA 

1024→32,1056→32, 
1056→32,1056→32, 
1024→128 

18*18*256 

FEM5 
Res-4 

（9*9*2048） 
Aconv*4+CA 

2048→32,2080→32, 
2080→32,2080→32, 
2048→128 

9*9*256 

 

3.3 Adjacency Auxiliary Module 
By adopting PFEM, we can capture effective context information of multi-scale and multi-
receptive fields. If the resulting feature mapping is passed directly to the decoder for decoding, 
the spatial accuracy may be lost in the deep layer. However, if 𝑓𝑓𝑖𝑖 is only connected with the 
corresponding decoder, as mentioned in Section 1, when the local edge information is blurred 
or the location information is not accurate, some information ambiguity in this layer is also 
transmitted to the decoding parts, which will result that ambiguity appears and lead to poor 
detection results, especially inaccurate detection of the target edge part. 

We know that the low-level features have rich details but background noise, while the high-
level features have better semantic information but the boundaries are fuzzy and rough. For 
this reason, we design the adjacency auxiliary module AAM to make adjacent layer features 
𝑓𝑓𝑖𝑖+1 and 𝑓𝑓𝑖𝑖 supplement each other to strengthen the common effective information. So that the 
invalid or interfering information can be suppressed and the ambiguity can be resolved. 
Through the combination of the feature information of the latter layer with the feature of the 
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current layer, the ambiguity and noise can be filtered. The feature expression of saliency 
targets can be more accurate, and better saliency prediction can be obtained. 

 

ReluConv BN

ReluConv BNU

C

U : Upsample  
Fig. 4. Structure of AAM 

 
Now explain how to obtain refinement features from the AAM, the structure figure is shown 

in Fig. 4. Obviously, the features of the outputs from PFEM are the same channel dimensions, 
but different in spatial dimensions. We conduct operation of up-sampling with a factor of 2 to 
the feature 𝑓𝑓𝑖𝑖+1𝑐𝑐 , so a new feature map 𝑓𝑓(𝑖𝑖+1)∗

𝑐𝑐  can be got, whose spatial dimensions is the same 
as 𝑓𝑓𝑖𝑖𝑐𝑐. Then we obtain the feature 𝑓𝑓𝑚𝑚𝑖𝑖  by element-wise multiplication between 𝑓𝑓(𝑖𝑖+1)∗

𝑐𝑐  and 𝑓𝑓𝑖𝑖𝑐𝑐. 
Lastly, the combined features are obtained by adding 𝑓𝑓𝑚𝑚𝑖𝑖  with the two input features and 
cascaded them along channels, so that the features have better spatial and semantic information. 
The whole process could be shown as follows. 
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where 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 refers to the convolution of kernel of 3×3, ⊗ is the operation of element-wise 
multiplication, 𝑈𝑈𝑈𝑈() is bilinear interpolation sampling. Details such as the size of input and 
output and the number of channels in AAM can be seen in Table 3. 
 

Table 3. Details of AAM (k: kernel; s: stride; p: padding) 
Block Input Layer Channel size Output 

AAM1 FAM4, FAM5 Conv(k=3×3, s=1,p=1) 
Bilinear interpolation 

256→128→256 18×18×256 

AAM2 FAM3, FAM4 Conv(k=3×3, s=1,p=1) 
Bilinear interpolation 

256→128→256 36×36×256 

AAM3 FAM2, FAM3 Conv(k=3×3, s=1,p=1) 
Bilinear interpolation  

256→128→256 72×72×256 

AAM4 FAM1, FAM2 Conv(k=3×3, s=1,p=1) 
Bilinear interpolation 

256→128→256 72×72×256 

 

3.4 Adjacent Decoding Module 
In addition, to effectively merge the multi-scale features obtained from AAM modules, we 
design adjacency auxiliary decoding (AAM_D) network based on AAM (shown in Fig. 5). 
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Fig. 5. Structure of AAM_D 

 
As mentioned above, AAM modules can be used to solve problems in which feature 

information is ambiguous. We can also convolute the features obtained from the top layer of 
the encoder to obtain the appropriate number of channels, and then regard the output of 
adjacent auxiliary features as a group of adjacent features with different properties. Taking the 
first decoding module as an example, we get new features 𝑓𝑓5∗ from feature 𝑓𝑓5 obtained from 
Res-5 by convolution operation with the kernel of 3×3 and channel number of 256. We treat 
it as one of the AAM’s inputs: 𝑓𝑓5𝑐𝑐 , and treat the features 𝑓𝑓4𝐴𝐴 obtained from the adjacency 
auxiliary module as another AAM’s input: 𝑓𝑓4𝑐𝑐. And then they are fed into the AAM. The input 
features of the latter decoder are analogous in turn, with the difference that the output of the 
previous decoder is regarded as a higher-level feature. Furthermore, in order to obtain more 
detailed spatial information, we obtained the spatial attention weights after concatenating the 
higher features and lower features, and weighted them into the connection features. The 
process of obtaining spatial attention is to take the maximum value and average value of each 
spatial pixel of feature mapping on all channels respectively to get two features with the size 
of ℎ × 𝑤𝑤 × 1 , cascade them through a convolution operation with the number of output 
channels being 1, and finally apply sigmoid to the features to get the spatial weight value. This 
module can further enhance the difference between salient objects and background, so as to 
obtain better salient prediction maps. 

 
Table 4. Details of AAM_D 

Block Input Layer Channel size Output 
AAM_D1 Res-4*, AAM1 AAM+SA 256→512→256 18*18*256 
AAM_D2 AAM2, AAM_D1 AAM+SA 256→512→256 36*36*256 
AAM_D3 AAM3, AAM_D2 AAM+SA 256→512→256 72*72*256 
AAM_D4 AAM4, AAM_D3 AAM+SA 256→512→256 72*72*256 

 

Table 4 shows the details of the AAM_D. The salient maps outputted by AAM_D can be 
seen in Fig. 6. Among them, pred1-4 is the saliency maps predicted by different decoding 
layers, which can be seen that the AANet formed by adjacent decoders can gradually obtain 
clearer saliency maps. For example, pred4, which is predicted by high-level features, has fine 
semantic target identification and location ability, but the target edge detection is not accurate 
enough. While pred3, pred2, and pred1 gradually integrate more low-level information on the 
basis of high-level features, the detection of target edge becomes increasingly accurate. The 
pred1 incorporates the most layers of information and produces the most accurate and clear 
saliency map, which is the reason that we ended up using the output of the last decoder as our 
final saliency maps. 
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Fig. 6. Visualization of output layers of different decoders 

3.5 Loss Function 
In the above sections, the PFEM is to obtain the feature-enhanced multi-scale information 
from the output of each layer of the backbone network, and salient prediction maps are 
obtained through the AAM and the AAM_D. In order to optimize the features of each layer, 
the network adopts the way of multi-level joint supervision, which outputs all the AAM_D of 
the four layers to predict the saliency maps and calculates the loss with the ground truth after 
up-sampling. The predicted maps were recorded as {pred4, pred3, pred2, pred1} respectively, 
and pred1 was taken as the final salient result. At present, binary cross-entropy loss (BCE) 
loss is the target function of many saliency detection methods during training, which is defined 
as: 

 
1 1

1 [ log( ) (1 ) log(1 )]
H W

bce ij ij ij ij
i j

L G S G S
H W = =

= − + − −
× ∑∑  (3) 

where H×W represent the scale of the input image, 𝐺𝐺𝑖𝑖𝑖𝑖 is the ground truth label of the pixel (i, 
j), and 𝑆𝑆𝑖𝑖𝑖𝑖 represents the corresponding saliency value in position (i, j). Because the multi-
level feature joint supervision is adopted in this paper, according to the description of the 
characteristics of saliency maps output by different decoding layers in section 3.4, we set the 
loss weights of different levels as 1, 0.5, 0.25, and 0.125 in turn. So, the final loss function is: 

 
( 1, ) 0.5 ( 2, ) 0.25 ( 3, )

0.125 ( 4, )
total bce bce bce

bce

L L pred g L pred g L pred g
L pred g

= + + +
 (4) 

where pred1, pred2, pred3, and pred4 are the prediction map of each layer, and 𝑔𝑔 is 
the corresponding ground truth. 

4. Experiment results and analysis 

4.1 Datasets 
In this paper, experiments are evaluated on six public salient object detection datasets and 
some introduction is under the following. ECSSD [35] contains of 1000 complex images. 
PASCAL-S [36] has 850 images containing multiple objects and cluttered backgrounds. 
DUTS [37] is the largest SOD dataset currently, which contains 10553 training images and 
5019 test images. DUT-OMRON [38] is a very challenging dataset for salient target detection 
at present, including 5168 complex images with cluttered backgrounds and one or more salient 
objects. SOD dataset constructed by V. Movahedi et al. [39] contains 300 images, many of 
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which reflect common challenges in real-world scenarios, such as low contrast and salient 
targets to the side. The HKU-IS [40] includes 4447 images with low contrast or multiple salient 
objects. 

4.2 Implementation Details 
ResNet-50, which is pre-trained on ImageNet, is adopted as the backbone network of this paper. 
In the training stage, the size of the picture after a random horizontal flip is adjusted to 320*320 
and randomly crop to 288×288 patches for training. To optimize the whole network, we adopt 
mini-batch Stochastic gradient descent. The batch and momentum are set 8 and 0.9 
respectively. And the weight attenuation and epoch are set to 5e-4 and 30. Warm-up strategy 
and linear decline strategy are adopted to adjust the learning rate. The model is implemented 
on Pytorch1.1. We use the training set part of DUTS as our training data set. Because the 
framework is an end-to-end network, in the test stage, the images are adjusted to 320×320 and 
sent directly to the network to predict the maps. 

4.3 Evaluation Metrics 
Three metrics are used to evaluate and compare the performance of our proposed approach 
with some previous representative saliency detection algorithms, including F-measure score, 
precision-recall (PR) curves and mean absolute error (MAE) score. With different thresholds, 
by comparing the binarized image with the ground truth (GT), the precision and recall pairs 
can be calculated. The F measure score is a weighted harmonic average of precision and recall, 
which can be calculated as: 

 
2

2

(1 ) Precision RecallF
Precision Recallβ

β
β
+ × ×

=
× +

 (5) 

To put more emphasis on precision, the value is set to 0.3. The MAE score is the average 
pixel-wise absolute difference between the prediction map and GT, and the formula is as 
follows: 

 
1 1

1 | ( , ) ( , ) |
H W

y x
MAE S x y G x y

H W = =

= −
× ∑∑  (6) 

where 𝑆𝑆(𝑥𝑥,𝑦𝑦) and 𝐺𝐺(𝑥𝑥,𝑦𝑦) represent the pixels of the prediction maps and GT, respectively. 
The smaller MAE indicates better performance. 

4.4 Performance Comparison 
The algorithm proposed in this paper was compared with 10 classical salient target detection 
models, including RCRR [24], DSC [26], BMP [13], LFR [30], Amulet [28], ELD [27], 
C2Snet [18], UCF [12], Capsal [19] and RFCN [10]. Core ideas and types about these 
algorithms are listed in Table 1. We run the code provided by the author to get the saliency 
map or directly use the saliency map provided by it, and then calculate the evaluation results 
on different test sets according to the saliency maps. 
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4.4.1 Quantitative Comparison 
Table 5. Compares with different saliency detect methods on 6 datasets. The best two results are 

highlighted in bold. 

Method 
ECSSD PASCAL-S HKU-IS DUTS-TE DUT-OMRON SOD 

Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE 

 conventional methods 
RCRR 0.6956 0.1837 0.6633 0.2267 0.6638 0.1711 0.5170 0.1901 0.5260 0.1823 0.5749 0.2585 

DSC 0.7185 0.1907 0.7185 0.2394 0.6796 0.1895 0.5247 0.2182 0.5355 0.2150 0.5916 0.2630 
 deep SOD methods 

BMP 0.8666 0.0545 0.7674 0.0736 0.8707 0.0387 0.7451 0.0490 0.6917 0.0635 0.7637 0.1079 
LFR 0.8794 0.0525 0.7641 0.1066 0.8706 0.0396 0.7211 0.0834 0.6776 0.1030 0.7892 0.1233 

Amulet 0.8684 0.0589 0.7632 0.0977 0.8428 0.0521 0.6775 0.0846 0.6472 0.0976 0.7445 0.1443 
ELD 0.8169 0.0783 0.7181 0.1216 0.7826 0.0719 0.6509 0.0924 0.6139 0.0909 0.7124 0.1552 

C2Snet 0.8653 0.0593 0.7672 0.0802 0.8395 0.0516 0.710 0.066 0.6647 0.0734 0.7638 0.1239 
UCF 0.8439 0.0691 0.7675 0.1155 0.8235 0.0612 0.6351 0.1119 0.6206 0.1203 0.7388 0.1476 

Capsal 0.8205 0.0728 0.8196 0.0729 0.8407 0.0613 0.7550 0.0692 0.5474 0.0873 0.6684 0.1307 
RFCN 0.8334 0.1070 0.7468 0.1316 0.8349 0.0889 0.7109 0.0900 0.6265 0.1105 0.7430 0.1697 
Ours 0.9060 0.0411 0.8017 0.0774 0.8915 0.0351 0.7957 0.0482 0.7374 0.0687 0.8086 0.1020 
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Fig. 7. The comparison of PR curves with previous methods on six datasets 

 

Table 5 shows the results of quantitative comparison of the algorithms in terms of Fβ and MAE 
scores on six datasets. It is obvious that our algorithm achieves the best results on almost all 
six datasets. Compared with these representative algorithms, our method is closest to the ideal 
value of 1 in F-measure score. For example, on the DUT-TE and DUT-OMRON datasets, our 
algorithm improved by about 0.05 over the best value in the comparison algorithm, which is a 
significant improvement, and the other datasets also improved by at least 0.02. In regard to 
MAE scores, our method reduces 0.01 on ECSSD dataset and 0.006 on DUT- OMRON dataset, 
and the MAE scores of other data sets also decrease. The above phenomenon shows that the 
number of prediction errors of our method is far less than that of other methods. Besides, it 
can be observed that our method performs better on some more complex and difficult datasets, 
such as HKU-IS, DUT-TE, DUT-OMRON, and SOD, in which many images have multiple 
salient objects and complex backgrounds. This indicates that, compared with the comparison 
methods, our algorithm is a more competitive algorithm, which shows the effectiveness of the 
model. 

In addition, Fig. 7 is the PR curve of our algorithm and other typical salient detection 
algorithms. Obviously, our algorithm has higher precision and recall. As can be seen from the 
figure, compared with other methods at different thresholds, the PR curve (red curve) obtained 
by our method is prominent in most cases, which is consistent with the measurements reported 
in Table 5. As you can see, our method is relatively weak in MAE score on PASCAL-S 
datasets, but we have better measurements on F-measure. Moreover, our model has much 
higher precision especially when the recall score is closer to 1, which indicates that the false 
positive rate of our method is lower than other methods. This proves the robustness of our 
algorithm on challenging datasets. In addition, our proposed method can detect salient areas 
of the image very well without any post-processing. 

 

4.4.2 Qualitative Evaluation 
Fig. 8 shows some visualization examples of different methods. The detection results shown 
in Fig. 8 by different methods are given in different challenging scenarios, such as small targets, 
multi-targets, irregular shapes, low contrast, foreground interference, and so on. Specifically, 
for those objects with small salient targets and low contrast, the comparison methods are 
difficult to detect complete salient objects. On the contrary, our method can detect the 
complete salient object with consistent salient values. As shown in the fourth row, other 
methods such as Amulet, UCF, RCRR, and other algorithms cannot accurately detect the target 
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at the center point, but our method can accurately grasp the target, which indicates that our 
PFEM can well extract effective information and extract the salient object. It is worth noting 
that our method has stronger robustness to background/foreground interference (like 
second/third row), and can capture the relationship between different objects (like fifth/ninth 
row). It shows that our proposed PFEM can fully extract the semantic information of the image, 
and the AAM can fully eliminate some ambiguous information. For example, in the third row, 
our method can accurately detect ‘ducks’ in the water, while other methods can not eliminate 
its reflection. It is worth mentioning that our method has better ability to detect edge details in 
the prominent central area. Because we also add spatial attention mechanism in the AAM, 
such as the images in the eighth and ninth rows, which do not consider the spatial position of 
the pictures equally but pay more attention to the foreground area, we can detect ‘the people 
on the sofa’ in the eighth row of pictures, and our method can also get the results closer to the 
ground truth for the details in the images. For example, our method can clearly detect ‘the 
deer's horns’ and ‘limbs’ in the ninth row of Fig. 8. 
 

 
Fig. 8. Visualization comparison of the proposed model with other methods.  

4.4.3 Speed Performance 
We compare the running times of our method with other SOD methods. The evaluation is 
conducted with an NVIDIA GTX 1080Ti GPU. The results are shown in Table 6. As it can 
be seen, our method is much faster than most of the compared methods. The testing process 
only costs 0.04s for each image. 
 

Table 6. Comparison of running times 
Method RCRR DSC BMP LFR Amulet ELD C2Snet UCF RFCN Ours 
Times(s) 1.21 1.89 0.06 0.08 0.06 0.59 0.03 0.11 0.65 0.04 
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4.5 Ablation Analysis 
We carry out ablation experiments to investigate the effectiveness of the modules designed in 
the proposed network. Our comparative experiments were conducted on the test set of DUTS 
dataset and the ECSSD dataset. We can see from Table 7 that the best performance can be 
achieved when the model contains all the components (PFEM, AAM, and AAM_D). 

The experimental settings are that the coding layer uses the most primitive backbone 
network. The decoding layers are the simplest convolutional filters and the results of each 
layer filter are output for training and testing. The measured results are shown in Table 7. 
Then we replace the convolutional filters with the adjacency decoders we designed, and we 
can see that there is a great enhancement in both the Fβ score and the MAE score. The Fβ of 
the DUTS-TE dataset has increased from 0.6819 to 0.7813(about improved by 15%), 
indicating that our adjacency decoder has achieved better results. After adding the adjacent 
auxiliary module, the MAE value of the DUT-TE dataset is reduced by 0.08 points, which 
indicates that this module plays an effective role in removing the interference part in features 
and reducing the false positive. When we add the PFEM to the framework, the Fβ and MEA 
scores of DUT-TE and ECSSD datasets are closer to the ideal value to some extent, which 
shows that our PFEM is very important in the whole network. 

 
Table 7. Ablation study for different components of the proposed AANet 

(B is the abbreviation of Baseline) 

 

 
Fig. 9. Visual examples of the ablation experiment. (a) Image. (b) GT. (c) Baseline. (d) B+AAM_D. 

(e) B+AAM+AAM_D. (f) B+PFEM+AAM+AAM_D 
 

In the visualization example in Fig. 9, we can also see that when we gradually add AAM 
and PFEM to the network, the performance is better and the best result is obtained. In Fig. 9, 
images in Fig. 9(c) are saliency maps from the simplest network, which is obvious that the 
saliency target is very blurred and the boundary is not clear. When AAM_D and AAM are 
added, it is obvious that the boundary of saliency target becomes sharper (as shown in Fig. 
9(d) and Fig. 9(e)). In the pictures of the second row and fourth lines, Fig. 9(e) have added 

Method 
DUTS-TE  ECSSD 

Fβ MAE  Fβ MAE 
Baseline 0.6819 0.0694  0.8178 0.0629 
B+AAM_D 0.7813 0.0529  0.9030 0.0439 
B+AAM+AAM_D 0.7855 0.0487  0.9048 0.0451 
B+PFEM+AAM+AAM_D 0.7957 0.0482  0.9060 0.0410 
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more target regions with respect to the maps of Fig. 9(d), which further shows that the fusion 
of the features of two adjacent layers through the AAM can really play a supplementary 
auxiliary role to the information. Although sometimes the discrimination ability of some 
regions is weakened because of the structural similarity between AAM and AAM_D, our 
PFEM can make up for this deficiency well and extract the strong semantic information of 
feature map to help determine the salient regions. For example, in Fig. 9(f), the "pentagons of 
starfish" in the first row, "animal’s carcasses" in the second row, and "flowers on the right 
side" in the fourth row can be completely detected. 

 

4.6 Failure Cases 
 

 
Fig. 10. Some failure cases 

 
Fig. 10 shows some cases of failure. In these scenarios, the foreground and background have 
very low contrast and the background texture is similar (as shown in the second column of Fig. 
10), which makes it difficult for our method to identify salient objects and details. In addition, 
due to the strong "salient-like" objects around the salient objects, our method has errors in the 
recognition of some scenes (as shown in the first column of Fig. 10). For these cases, we may 
want to use the way of scene understanding to help determine the salient target detection in 
such complex scenes. 

5. Conclusion 
In the paper, we propose an adjacency auxiliary network based on multi-scale feature fusion 
for feature extraction in salient target detection. Firstly, we design the parallel connection 
feature enhancement module, so that the feature mapping can get complete multi-scale context 
information, and then we propose the adjacency auxiliary module to fuse the high-and low-
level information to remove the possible ambiguity and background noise. Finally, we use the 
adjacency decoding module to further refine and fuse the features and fully integrate different 
levels of features. The experimental results on six datasets show that the proposed method is 
superior to the 10 previous algorithms proposed above in both quantitative and qualitative 
aspects. In the future work, we will continue to study the new network framework like two-
stream network and study how to make more use of contour information to improve the 
performance of saliency detection. 
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