• 제목/요약/키워드: flow instabilities

검색결과 128건 처리시간 0.023초

고체 입자와 유동방향 변환에 의한 로켓 모터 내 음향 감쇠에 대한 고찰 (Study on Acoustic Attenuation due to Particles and Flow Turning in Rocket Motors)

  • 김태진;성홍계;서성현
    • 한국항공우주학회지
    • /
    • 제43권9호
    • /
    • pp.838-844
    • /
    • 2015
  • 본 논문은 고체 로켓 모터 연소실 내의 연소과정 중 발생하는 연소 불안정 현상을 억제하는 여러 요소들 중 입자에 의한 감쇠와 유동방향 변환 감쇠에 대한 선행연구의 연구결과를 정리 분석하였다. 입자에 의한 감쇠는 연소실 내에서 발생하는 고주파 연소불안정을 억제하는데 있어 가장 효과적이며 입자의 직경과 질량 분율에 영향을 받는다. 한편 입자에 의한 감쇠에 비해 적은 감쇠량을 갖는 유동방향 변환 감쇠는 추진제의 구조에 따라 변하며, 추진제 표면에서 생성된 와도를 고려한다면 펌핑에 의한 증폭을 고려해야한다. 그러나 추진제의 형상이 원통형일 경우 유동방향 변환 감쇠와 펌핑에 의한 증폭의 크기는 같아지고 상쇄가 일어나 연소 안정성을 보다 쉽게 평가할 수 있다.

한국에서 발생한 청천난류 사례들에 대한 수치연구 (A Numerical Study on Clear-Air Turbulence Events Occurred over South Korea)

  • 민재식;김정훈;전혜영
    • 대기
    • /
    • 제22권3호
    • /
    • pp.321-330
    • /
    • 2012
  • Generation mechanisms of the three moderate-or-greater (MOG)-level clear-air turbulence (CAT) encounters over South Korea are investigated using the Weather Research and Forecasting (WRF) model. The cases are selected among the MOG-level CAT events occurred in Korea during 2002-2008 that are categorized into three different generation mechanisms (upper-level front and jet stream, anticyclonic flow, and mountain waves) in the previous study by Min et al. For the case at 0127 UTC 18 Jun 2003, strong vertical wind shear (0.025 $s^{-1}$) generates shearing instabilities below the enhanced upper-level jet core of the maximum wind speed exceeding 50 m $s^{-1}$, and it induces turbulence near the observed CAT event over mid Korea. For the case at 2330 UTC 22 Nov 2006, areas of the inertia instability represented by the negative absolute vorticity are formed in the anticyclonically sheared side of the jet stream, and turbulence is activated near the observed CAT event over southwest of Korea. For the case at 0450 UTC 16 Feb 2003, vertically propagating mountain waves locally trigger shearing instability (Ri < 0.25) near the area where the background Richardson number is sufficiently small (0.25 < Ri < 1), and it induces turbulence near the observed CAT over the Eastern mountainous region of South Korea.

Loss Analysis by Impeller Blade Angle in the S-Curve Region of Low Specific Speed Pump Turbine

  • Ujjwal Shrestha;Young-Do Choi
    • 신재생에너지
    • /
    • 제20권2호
    • /
    • pp.35-43
    • /
    • 2024
  • A pump turbine is a technically matured option for energy production and storage systems. At the off-design operating range, the pump turbine succumbed to flow instabilities, which correlated with the pump turbine geometry. A low specific speed pump turbine was designed and modified according to the impeller blade angle. Reynolds-Average Navier-Stokes is carried out with a shear stress transport turbulence model to evaluate the detailed flow characteristics in the pump turbine. The impeller blade inlet angle (𝛽1) and outlet angle (𝛽2) are used to evaluate hydraulic loss in the pump turbine. When 𝛽1 changed from low to high value, the maximum efficiency is increased by 4.75% in turbine mode. The S-Curve inclination is reduced by 8% and 42% for changes in 𝛽1 and 𝛽2 from low to high values, respectively. At α = 21°, the shock loss coefficient (𝜁s) is reduced by 16% and 19% with increases of 𝛽1 and 𝛽2 from low to high values, respectively. When 𝛽1 and 𝛽2 values increased from low to high, the impeller friction coefficient (𝜁f) increased and decreased by 20% and 8%, respectively. Hence, the high 𝛽2 effectively reduced the loss coefficient and S-Curve inclination.

열교환기에 사용되는 얇은 사각 단면 튜브의 고유규진동계수에 대한 이론적 분석 (The Theoretical Investigation of the Natural Frequency Coefficients for a Thin Rectangular Tube used in the Heat Exchanger)

  • 김기만
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.373-383
    • /
    • 1995
  • From the viewpoint of the structural design, the principal problem of the heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive fluid loading may give rise to permanent deformation of tube and would enentually result in collapse of heat exchanger, which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analtically the vibration characteristics of thin rectangular tube used in the heat exchanger. The model consists of two flat plates separated by fluid. The effects of the fluid in the tube was stuided. For analyses, the natural frequency coefficients of the model were investigated for the plate aspect ratios, channel heights, and boundary conditions. As conclusions, the natural frequency coefficients of the tube is found to be affected largely by the fluid loading and the channel heights.

  • PDF

부가질량을 갖고 유동유체에 의한 송수관의 동적 안정성에 관한 실험적 검증 (Experimental Verification on Dynamic Stability of a Pipe with Attached Masses Conveying Fluid)

  • 김삼일;류봉조;정승호;류두현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.127-131
    • /
    • 2000
  • The paper presents both theoretical and experimental study for dynamic instabilities of a vertical cantilevered pipe with two attached lumped masses conveying fluid. The two attached lumped masses can be considered as valves or some mechanical parts in real pipe system. Eigenvalue behaviors depending on the flow velocity are investigated for the change of positions and magnitudes of an attached lumped mass and a tip mass. In order to verify appropriaty of numerical solutions, experiments were accomplished. Theoretical predictions have a good agreement with experimental ones.

  • PDF

Improvements to the stability of electric field sensors

  • Lee, Dong-Oh;Robert Boston;Dietrich W. Langer;Joel Falk
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.495-496
    • /
    • 1998
  • The measurement of the amplitude and phase of electric fields on high voltage transmission lines is important for several reasons including a) Metering and determination of power flow, b) protective relaying. and c) fault sensing. The work reported here is directed toward a major improvement to optically based, electric-field sensors. This is a signal processing based technique for overcoming the instabilities of conventional, optically-based, electric-field sensors to changes in optical power or temperature.

  • PDF

비선형 열원모델을 이용한 Rijke tube 내열음향 불안정 곡선의 수치예측기법 (Numerical Prediction of Thermoacoustic Instability in Rijke Tube Using Non-linear Model for Heat Source)

  • 송우석;이승배
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2524-2529
    • /
    • 2008
  • The thermal system like a combustion chamber is believed to experience a significant instability problem with vibration in case that the thermal energy or the acoustic energy are transformed into a different form through a relevant path. This study deals with a numerically- predicted, Thermoacoustic instability in a Rijke tube by using a non-linear model for a heat source. The heating part where the energy transformation occurs actively is modeled after simulating two-dimensional cylinder case with constant surface temperature, and a nonlinear model that accounts for the transfer function of magnitude- and phase-characteristics is properly implemented so as to be dependent on the pulsation strength in the tube. The heat source model is observed to result in equivalent Thermoacoustic instabilities in the Rijke tube except low flow-rate cases in which the natural convection is dominant.

  • PDF

회전 역삼투 분리막 여과 (Rotating Reverse Osmosis Membrane Filtration)

  • Sangho Lee;Richard M. Lueptow
    • 멤브레인
    • /
    • 제13권3호
    • /
    • pp.131-142
    • /
    • 2003
  • 원통형 회전 역삼투법은 높은 전단력과 유체의 불안정성을 결합시켜 막오염을 감소시키는 동적 여과방법이다. 이 논문은, 회전여과의 물리적 특성, 물질전달과 농도분극 현상, 이론적 및 실험적 해석, 사례연구 등 회전역삼투법에 대한 최근의 연구를 요약해서 보여준다.

복수 부가질량을 갖고 유동유체에 의한 수직외팔 파이프의 동적안정성에 관한 실험적 검증 (Experimental Verification on Dynamic Stability of a Vertical Cantilevered Pipe with Attached Masses Conveying Fluid)

  • 김삼일;정승호;류봉조
    • 한국소음진동공학회논문집
    • /
    • 제11권6호
    • /
    • pp.208-215
    • /
    • 2001
  • The paper presents both theoretical and experimental study fur dynamic instabilities of a vortical cantilevered pipe with two attached lumped masses conveying fluid. The two attached lumped masses can be considered as valves or some mechanical paras in real pipe systems. Eigenvalue behaviors depending on the flow velocity are investigated for the change of Positions and magnitudes of an attached lumped mass and a tip mass. In order to verify appropriate of numerical solutions, experiments were accomplished. Theoretical predictions have a good agreement with experimental ones.

  • PDF

전달함수를 이용한 2단 덕트 시스템에서의 연소불안정 해석 (Analysis of Combustion Instabilities in a 2-stage Duct System using Transfer Functions)

  • 김선영;김대식
    • 한국분무공학회지
    • /
    • 제26권4호
    • /
    • pp.182-188
    • /
    • 2021
  • In this paper, using a transfer function-based analytical model, major factors influencing the acoustics and combustion instability in a two-stage duct system composed of a nozzle and a combustor were derived and their quantitative effects were evaluated. From the acoustic analysis, it was confirmed that the change in reflection coefficient and mean flow could have a great influence on the instability growth rate, and the area ratio and speed of sound ratio between the nozzle and the combustor are also key parameters to determine combustion instability as well as flame transfer functions.