• Title/Summary/Keyword: flood analysis

Search Result 1,811, Processing Time 0.035 seconds

A Case Study on Development of Stormwater Retention and Infiltration Pond System (우수저류 및 침투연못 시스템개발 사례연구 - 우수 저류 및 침투 효과를 중심으로 -)

  • Lee, Jae Chul;Yoon, Yeo Jin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.4
    • /
    • pp.52-61
    • /
    • 2003
  • This study was carried out to analyze the effects of stormwater retention and infiltration pond on reduction of flood peak and volume in a experimentally developed ecological pond. The experimental site has 542$m^2$ watershed area, 1,310mm yearly-averaged rainfall. And the area of the retention pond is 60$m^2$, the maximum water depth is 0.5m, the maximum and average storage is 15$m^3$and 9.3$m^3$d. And the area of infiltration pond is 58$m^2$, and the water depth varies 0.2m~0.5m. The monitoring system consists of one rainfall gage, one Parshall flume and acoustic water level gage, two rectangular weirs and acoustic water level gage for discharge gaging, and one data recording unit. Data from ten storm events in total, three storm events in year 2000 and seven storm events in year 2001, were collected. From the data the evaporation rate was achieved with the water balance equation, and the result shows 5.0mm/day in average. The result from the analysis of the effects on reduction of flood peak and volume, is that 14% reduction of flood volume and 15% reduction of flood peak in retention pond and 49% reduction of flood volume in infiltration pond.

Work Measurement of Dietetic Staff through Work Sampling Methodology in School Foodservice Systems (워크샘플링에 의한 학교급식 전담직원의 직무분석)

  • 양일선;이영은;차진아;유태용;정라나
    • Journal of Nutrition and Health
    • /
    • v.35 no.2
    • /
    • pp.263-271
    • /
    • 2002
  • The purpose of this study was to determine the standard work time of dietetic staff through work sampling methodology in school flood service systems. Work measurement through work sampling methodology was conducted in five conventional, five commissary and five joint management flood service systems over two consecutive weeks in October 1999. Statistical analysis was performed on the SAS/Win 6.12 package program for Kruskal-Wallis test and multiple comparison. Observed data were satisfied with a confidence level of 95% and a confidence interval of $\pm$ 0.05. The results of this study can be summarized as follows. The actual time spent by dietetic staff members in conventional, commissary, joint-management flood servile systems was 2,394, 2,521 and 2,110 minutes per week, respectively. Transportation time of each flood service systeml and ILO allowance rate (11%) was applied. Thus, the standard work time per week of dietetic staff members in conventional, commissary, joint-management flood service systems was 2,746.14, 2,861.58 and 2,520.81 minutes, respectively. The standardized index was 1.04, 1.08 and 0.95 men in conventional, commissary, and joint-management flood service systems, respectively. Regardless of the school flood service system, those with "the duty of cooking and distribution management" had the longest labor time, while those with "duty of nutritional education" had the shortest labor time.

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Flood Analysis in the Tidal Reaches of the Nakdong River (낙동강 하류부의 감조구간에 대한 홍수해석)

  • Lee, Joo-Heon;Lee, Eun-Tae;Lee, Do-Hun;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.235-242
    • /
    • 1998
  • The objective of this study is to develope a predictive model for flood forecasting in the tidal reaches of the Nakdong river and to analyze the tidal effects of major flood forecasting station of the Nakdong river by using the hydraulic flood routing. In the calibration process the optimum roughness coefficients as functions of channel reach and discharge were determined and the calibration results suggest that the unsteady hydraulic flood routing model simulated with the optimum roughness coefficients showed close agreement between the calculated and observed stage.

  • PDF

Application of Uncertainty Method fer Analyzing Flood Inundation in a River (하천 홍수범람모의를 위한 불확실도 해석기법의 적용)

  • Kim, Jong-Hae;Han, Kun-Yeun;Seo, Kyu-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.4
    • /
    • pp.661-671
    • /
    • 2003
  • The reliability model is developed for analyzing parameter uncertainty and estimating of flood inundation characteristics in a protected lowland. The approach is based on the concept of levee safety factor and the statistical analysis of model parameters affecting the variability of flood levels. Monte Carlo simulation is incorporated into the varied flow and unsteady flow analysis to quantify the impact of parameter uncertainty on the variability of flood levels. The model is applied to a main stem of the Nakdong River from Hyunpoong to Juckpogyo station. Simulation results show that the characteristics of channel overflow and return now are well simulated and the mass conservation was satisfied. The inundation depth and area are estimated by taking into consideration of the uncertainty of width and duration time of levee failure.

Proposal for application of spatial data and quality check criteria for estimating damage from storm and flood (풍수해 피해 추정을 위한 공간정보 DB의 활용방안 및 품질 점검 기준 제안)

  • Won, Seok-Hwan;Kim, Hyeon-Deok;Kim, Sang-Min
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.81-100
    • /
    • 2020
  • The purpose of this study was to propose applicability of spatial data and quality check criteria for estimating damage from storm and flood. Using the data from the National Disaster Management System and National Spatial Data Infrastructure, spatial database for estimation of storm and flood damage has been mapped to each type of damage. This was proposed as the quality check criteria for damage analysis. Through this study, it is possible to utilize the spatial database for estimating storm and flood damage. The reliability of analysis results are ensured through the quality check criteria.

Palaeoflood Study by using the Slackwater Deposits (Slackwater 퇴적물을 이용한 고범람 연구)

  • KIM, SongHyun;TANAKA, Yukiya
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.163-175
    • /
    • 2011
  • Slackwater deposits are fine-grained flood sediments that deposited in areas of reduced velocity during flood period. These deposits have been used in numerous studies to estimate the magnitude and frequency of discrete flood events as the most commonly utilized PSIs (palaeostage indicators) in palaeoflood hydrology. Palaeoflood data by analysis of the slackwater deposits contribute to improve the estimation of flood-probability and reconstruct the palaeo-environment and past fluvial process. However, very few studies of these flood deposits have been carried out in Korea. Therefore, this study attempts to review the studies about slackwater deposits analysis and to investigate the characteristics, the research methods of slackwater deposits and the research-provability in Korea.

The Reducing Effects Analysis of Floods through Washland Construction in Hwapocheon Basin (화포천 유역의 천변저류지 조성을 통한 홍수 저감효과 분석)

  • Jeong, Young-Won;Kim, Young-Do;Park, Jae-Hyun;Yoon, Byung-Man
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1489-1493
    • /
    • 2009
  • The disaster with many casualties every year by floods, and the economic loss will occur in Korea. The establishment and the recovery measures are necessary. In this research, we analyzed the effect for reducing flood by making washland in flood season, where is used as the wetland in non-flood season in Hwapocheon basin of Nakdong River, Korea. We prepared draingage of inner basin for flood in the past because the water elevation of Hwapocheon is lower than the water elevation of the Nakdong River. On the other hand, now a days, drainage capacity of the expansion and change of the height of the embankment have limitations, because of the increase in torrential rains. In this study, HEC-RAS is used for the unsteady flow routing for the effectiveness analysis of flood level mitigation in flood season. This analysis was performed according to the scenarios of washland construction location and its scale.

  • PDF

Design Flood Estimation by Basin Characteristics (유역특성을 이용한 설계홍수량 추정)

  • Park, Ki-Bum;Kim, Gyo-Sik;Han, Ju-Heun;Bae, Sang-Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1172-1175
    • /
    • 2006
  • Generally, the estimation of design flood uses basin rainfall data, water level data, and runoff data, and so forms rainfall-runoff model. Because owing to the lack of hydrological data, the decision of representative unit hydrograph about the basin is difficult, the estimation of design flood uses topography feature data, and so presumes variables, and then applies the presumed variables to the model. In estimating design flood by using the model, it is considerably difficult to analyze how the model input variables estimated by topography factors, or the design flood data estimated previously are related to basin feature factors as the basic data, and presume design flood in the unmeasured basins or the basins where river arrangement basic plan is not established. The purpose of this study is to analyze how the design flood estimated previously by river arrangement basic plan is correlated with topography factors in presuming design flood, and so examine the presumption measures of design flood by using topography feature data and probability rainfall data.

  • PDF

Estimation of Design Flood Considering Time Distribution of Rainfall (강우 시간분포를 고려한 설계홍수량산정)

  • Park, Jae-Hyun;Ahn, Sang-Jin;Hahm, Chang-Hahk;Choi, Min-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1191-1195
    • /
    • 2006
  • Now days, heavy storm occur to be continue. It is hard to use before frequency based on flood discharge for decision that design water pocket structure. We need to estimation of frequency based on flood discharge on the important basin likely city or basin that damage caused by flood recurrence. In this paper flood discharge calculated by Clark watershed method and SCS synthetic unit hydrograph method about upside during each minute of among time distribution method of rainfall, Huff method choosing Bocheong Stream basin that is representative basin of International Hydrologic Project (IHP) about time distribution of rainfall that exert big effect at flood discharge estimate to research target basin because of and the result is as following. Relation between probability flood discharge that is calculated through frequency analysis about flood discharge data and rainfall - runoff that is calculated through outward flow model was assumed about $48.1{\sim}95.9%$ in the case of $55.8{\sim}104.0%$, SCS synthetic unit hydrograph method in case of Clark watershed method, and Clark watershed method has big value overly in case of than SCS synthetic unit hydrograph method in case of basin that see, but branch of except appeared little more similarly with frequency flood discharge that calculate using survey data. In the case of Critical duration, could know that change is big area of basin is decrescent. When decide time distribution type of rainfall, apply upside during most Huff 1-ST because heavy rain phenomenon of upsides appears by the most things during result 1-ST about observation recording of target area about Huff method to be method to use most in business, but maximum value of peak flood discharge appeared on Huff 3-RD too in the case of upside, SCS synthetic unit hydrograph method during Huff 3-RD incidental of this research and case of Clark watershed method. That is, in the case of Huff method, latitude is decide that it is decision method of reasonable design floods that calculate applying during all $1-ST{\sim}4-TH$.

  • PDF