• 제목/요약/키워드: flexure error

검색결과 49건 처리시간 0.031초

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

동조자이로스코프의 기계부 오차 해석 및 동적밸런싱 (Error Aalysis of Mechanical Parts and Dynamic Balancing in A Dynamically Tuned Gyroscope)

  • J.O. Young;C.G. Ahn;Lee, J.M.
    • 한국정밀공학회지
    • /
    • 제14권2호
    • /
    • pp.13-22
    • /
    • 1997
  • Strapdown inertial navigation system(SDINS) is a navigational instruments necessary to guide and con- trol a free vehicle. In this study, an error analysis of mechanical parts is carried out for manufacturing a dynamically tuned gyroscope. The errors usually come from the tolerance in machining and assembly. In the error analysis, a criterion to be considered during designing and manufacturing is proposed by quanti- tatively analyzing the effect of DTG performance by tolerances. The theory of dynamic balancing is deduced and unbalance is reduced through experiment.

  • PDF

광중합형 레진의 3점 굴곡 강도와 이축 굴곡 강도 측정 방법에 대한 상대적 신뢰도의 비교 (THE COMPARISON OF RELATIVE RELIABILITY ON BIAXIAL AND THREE POINT FLEXURAL STRENGTH TESTING METHODS OF LIGHT CURING COMPOSITE RESIN)

  • 서덕규;노병덕
    • Restorative Dentistry and Endodontics
    • /
    • 제31권1호
    • /
    • pp.58-65
    • /
    • 2006
  • 이번 실험의 목적은 이축 굴곡 강도 시험의 복합레진에서의 적용가능성을 위해 기존의 3점 굴곡 강도 시험과 이축 굴곡 강도 시험을 이용하여 치과용 광중합형 레진의 강도를 측정하고, 이를 Weibull modulus를 이용하여 상대적 신뢰도를 비교하는 것이다. 이번 실험에 사용된 재료는 $MICRONEW^{TM},\;RENEW^{(R)}$ (Bisco, Schaumburg, USA)의 두 가지 광중합형 수복 재료이다. 이축 굴곡 강도 측정에는 International Organization for Standardization (ISO) 6872 규정에 따라 piston-on-3-ball test를 사용하였으며 검사 시편은 직경이 각각 12 mm (지지원의 반지름 3.75 mm), 16 mm (지지원의 반지름 5 mm), 두께가 각각 0.5 mm, 1 mm, 2 mm인 여섯 개의 군으로 나누어 제작하였으며 각 군당 시편을 20개씩 제작하였다. $MICRONEW^{TM}$$RENEW^{(R)}$의 실험 결과, 이축 굴곡 강도가 3점 굴곡 강도보다 높은 평균값을 나타내었고 이축 굴곡 강도의 모든 군이 3점 굴곡 강도보다 높은 Weibull modulus 값을 보여, 이축 굴곡 강도 시험이 상대적으로 실험적 오차의 영향을 적게 받는 방법으로 신뢰 할 수 있었다. 또한 이축 굴곡 강도 시험에서 시편의 두께가 2 mm일 때 가장 높은 Weibull modulus를 나타내었으며 이축 굴곡 강도시험군 중, $MICRONEW^{TM}$의 두께 2 mm군에서는 지지원의 반지름에 따른 굴곡 강도의 통계학적 유의차이가 없었고 (p>0.05), 이를 제외한 모든 군에서 시편의 두께와 지지원의 반지름에 따른 굴곡 강도의 통계학적 유의차이가 있었다 (p<0.05). 위의 결과로 미루어 볼 때 두께 2 mm군에서 이축 굴곡 강도는 기존의 3점 굴곡 강도 시험보다 우수한 것으로 추천할 수 있는 방법이다.

초정밀 3축 이송 스테이지의 개발 : 2. 제작 및 성능 평가 (Development of 3-axis fine Positioning Stage : Part 2. Fabrication and Performance Evaluation)

  • 강중옥;백석;한창수;홍성욱
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.155-162
    • /
    • 2004
  • This paper presents the fabrication procedure and the experiments for the 3-axis fine positioning stage proposed in[1]. First, the dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the stage design specifications. Secondly, the performance of the stage is also evaluated on the accuracy associated with linear positioning, angular error, and straightness error. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning. Through the analysis and experiment, the developed fine positioning stage are found to have a long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design.

초정밀 가공기의 실시간 운동오차 및 열변형오차 보상 (Real-time Motion Error Time and the Thermal Error Compensation of Ultra Precision Lathe)

  • 곽이구;김홍건;김재열
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.44-48
    • /
    • 2006
  • Recently, demand the ultra precision product which is increasing rapidly is used extensively frontier industry field such as semi-conductor, computer, aerospace, precision machine. Ultra precision processing is the portion that is very needed to NT in the field of mechanical engineering. The latest date, together with radical advancement of electronic and photonics industry, necessity of ultra precision processing is on the increase for the manufacture of various kernel parts those are connected with these industrial fields. Specially, require motion accuracy of high resolution of nm order in stroke of hundreds millimeters according as diameter of processing object great and processing accuracy rises. In this case ,the response speed absolute delay because inertial mass of moving part is very large. Therefore, real time motion error compensation becomes very hardly. In this paper, we used ultra precision cutting unit(UPCU) to cope such problem. a UPCU is designed and tested to obtain sub-micrometer from accuracy in diamond turning of flat surfaces. The thermal growth spindle error is compensated for real time using a UPCU driven by piezoelectric actuator along with a laser encoder displacement sensor.

직선 이송축의 3자유도 오차 보정을 위한 미세 구동 스테이지 개발 및 성능 평가 (Development and Performance Evaluation of Fine Stage for 3-DOF Error Compensation of a Linear Axis)

  • 이재창;이민재;양승한
    • 한국정밀공학회지
    • /
    • 제34권1호
    • /
    • pp.53-58
    • /
    • 2017
  • A fine stage is developed for the 3-DOF error compensation of a linear axis in order to improve the positioning accuracy. This stage is designed as a planar parallel mechanism, and the joints are based on a flexure hinge to achieve ultra-precise positioning. Also, the effect of Abbe's offsets between the measuring and driving coordinate systems is minimized to ensure an exact error compensation. The mode shapes of the designed stage are analyzed to verify the desired 3-DOF motions, and the workspace and displacement of a piezoelectric actuator (PZT) for compensation are analyzed using forward and inverse kinematics. The 3-DOF error of a linear axis is measured and compensated by using the developed fine stage. A marked improvement is observed compared to the results obtained without error compensation. The peak-to-valley (PV) values of the positional and rotational errors are reduced by 92.6% and 91.3%, respectively.

피치운동을 이용한 정밀 다위치 정렬기법 개발 (Development of the Precise Multi-Position Alignment Method using a Pitch Motion)

  • 이정신
    • 한국군사과학기술학회지
    • /
    • 제13권4호
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

간섭계를 이용한 링레이저 자이로스코프의 플렉셔 오차 측정 (Interferometric Measurement of Flexure Error in a Ring Laser Gyroscope)

  • 김정주;이동찬;이재철;조민식;권용율
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 하계학술발표회
    • /
    • pp.272-273
    • /
    • 2003
  • 링레이저 자이로스코프(Ring Laser Gyroscope-이하 RLG)는 비행기, 유도무기, 선박, 지상무기 등의 관성항법장치(Inertial Navigation System)에 사용되는 각속도 센서로서 항체의 위치와 자세 정보를 제공하는 핵심 구성품 중의 하나이다. 각속도 검출 원리는 삼각형 또는 사각형의 공진기에 He과 Ne을 혼합한 이득매질을 사용하여 서로 반대방향으로 회전하는 두 개의 레이저 빔을 발생시켜서 Sagnac 효과에 의해 외부의 회전 입력을 받을 때 서로 다른 광 경로의 차이로 인한 두 빔의 간섭으로 회전각을 검출한다. (중략)

  • PDF

XY 스캐너의 아베 오차 최소화를 위한 최적 설계 및 나노 정밀도의 원자 현미경 피치 측정 불확도 평가 (Optimal design of a flexure hinge-based XY AFM scanner for minimizing Abbe errors and the evaluation of pitch measuring uncertainty of a nano-accuracy AFM system)

  • 김동민;이동연;권대갑
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.96-103
    • /
    • 2006
  • To establish of standard technique of nano-length measurement in 2D plane, new AFM system has been designed. In the long range (about several tens of ${\mu}m$), measurement uncertainty is dominantly affected by the Abbe error of XY scanning stage. No linear stage is perfectly straight; in other words, every scanning stage is subject to tilting, pitch and yaw motion. In this paper, an AFM system with minimum offset of XY sensing is designed. And XY scanning stage is designed to minimize rotation angle because Abbe errors occur through the multiply of offset and rotation angle. To minimize the rotation angle optimal design has performed by maximizing the stiffness ratio of motion direction to the parasitic motion direction of each stage. This paper describes the design scheme of full AFM system, especially about XY stage. Full range of fabricated XY scanner is $100{\mu}m\times100{\mu}m$. And tilting, pitch and yaw motion are measured by autocollimator to evaluate the performance of XY stage. As a result, XY scanner can have good performance. Using this AFM system, 3um pitch specimen was measured. The uncertainty of total system has been evaluated. X and Y direction performance is different. X-direction measuring performance is better. So to evaluate only ID pitch length, X-direction scanning is preferable. Its expanded uncertainty(k=2) is $\sqrt{(3.96)^2+(4.10\times10^{-5}{\times}p)^2}$ measured length in nm.

An improved multiple-vertical-line-element model for RC shear walls using ANN

  • Xiaolei Han;Lei Zhang;Yankun Qiu;Jing Ji
    • Earthquakes and Structures
    • /
    • 제25권5호
    • /
    • pp.385-398
    • /
    • 2023
  • The parameters of the multiple-vertical-line-element model (MVLEM) of reinforced concrete (RC) shear walls are often empirically determined, which causes large simulation errors. To improve the simulation accuracy of the MVLEM for RC shear walls, this paper proposed a novel method to determine the MVLEM parameters using the artificial neural network (ANN). First, a comprehensive database containing 193 shear wall specimens with complete parameter information was established. And the shear walls were simulated using the classic MVLEM. The average simulation errors of the lateral force and drift of the peak and ultimate points on the skeleton curves were approximately 18%. Second, the MVLEM parameters were manually optimized to minimize the simulation error and the optimal MVLEM parameters were used as the label data of the training of the ANN. Then, the trained ANN was used to generate the MVLEM parameters of the collected shear walls. The results show that the simulation error of the predicted MVLEM was reduced to less than 13% from the original 18%. Particularly, the responses generated by the predicted MVLEM are more identical to the experimental results for the testing set, which contains both flexure-control and shear-control shear wall specimens. It indicates that establishing MVLEM for RC shear walls using ANN is feasible and promising, and that the predicted MVLEM substantially improves the simulation accuracy.