• Title/Summary/Keyword: flexural strength analysis

Search Result 792, Processing Time 0.03 seconds

Reliability-based Design Method of Concrete Armour Units with Structural Stability (구조적 안정성을 고려한 콘크리트 피복재의 신뢰성 설계)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • A method for the determination of concrete armor unit weights with hydraulic stability and structural stability may be formulated in this paper. The hydraulic stability is analyzed by using Hudson's formula, the structural stability is also studied by evaluation of maximum flexural tensile stresses in armor unit induced by the impact loads and by comparison of those with the tensile resistance strength directly. The applicable criteria for concrete armor units can be represented as a function of design wave heights with return period, armor weights, and tensile strengths for the practical uses. In addition, reliability analyses for two failure modes are carried out to take into account some uncertainties. Finally, a series system for two-failure mode analysis can be made up straightforwardly, by which the optimal weights of armor units can be estimated with the various relative breakages, given the specific target probability of failure under the concepts of reliability-based design method.

Characteristics of Flexural Capacity and Ultrasonic in RC member with Corroded Steel and FRP Hybrid Bar (부식된 FRP Hybrid Bar의 휨 내력 및 초음파 속도 특성)

  • Choi, Se-Jin;Mun, Jin-Man;Park, Ki-Tae;Park, Cheol-Woo;Kwon, Seung-Jun
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.8
    • /
    • pp.397-407
    • /
    • 2015
  • Concrete is a attractive construction material, however durability problem occur due to steel corrosion, which leads propagation to structural safety problem. The recently developed FRP (Fiber Reinforced Plastic) Hybrid Bar has an engineering merit of both structural steel and FRP. Accelerated corrosion test for RC (Reinforced Concrete) samples with normal steel and FRP Hybriud Bar are performed and their flexural capacity is evaluated. Furthermore UV(Ultrasonic Velocity) measurement is attempted for analysis of variation of UV due to corrosion condition. After corrosion test, there is no significant reduction in RC beam with FRP hybrid bar but 11.5% of reduction in the case of normal steel is evaluated with 3.3% of UV reduction. For commercial production of FRP hybrid bar, bond strength evaluation through long-term submerged corrosion is required.

Comparative experimental study on seismic retrofitting methods for full-scale interior reinforced concrete frame joints

  • Yang Chen;Xiaofang Song;Yingjun Gan;Chong Ren
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.385-397
    • /
    • 2023
  • This study presents an experiment and analysis to compare the seismic behavior of full-scale reinforced concrete beam-column joint strengthened by prestressed steel strips, externally bonded steel plate, and CFRP sheets. For experimental investigation, five specimens, including one joint without any retrofitting, one joint retrofitted by externally bonded steel plate, one joint retrofitted by CFRP sheets, and two joints retrofitted by prestressed steel strips, were tested under cyclic-reserve loading. The failure mode, strain response, shear deformation, hysteresis behavior, energy dissipation capacity, stiffness degradation and damage indexes of all specimens were analyzed according to experimental study. It was found that prestressed steel strips, steel plate and CFRP sheets improved shear resistance, energy dissipation capacity, stiffness degradation behavior and reduced the shear deformation of the joint core area, as well as changed the failure pattern of the specimen, which led to the failure mode changed from the combination of flexural failure of beams and shear failure of joints core to the flexural failure of beams. In addition, the beam-column joint retrofitted by steel plate exhibited a high bearing capacity, energy consumption capacity and low damage index compared with the joint strengthened by prestressed steel strip, and the prestressed steel strips reinforced joint showed a high strength, energy dissipation capacity and low shear deformation, stirrups strains and damage index compared to the CFRP reinforced joint, which indicated that the frame joints strengthened with steel plate exhibited the most excellent seismic behavior, followed by the prestressed steel strips.

Impact of openings on the structural performance of ferrocement I-Beams under flexural loads

  • Yousry B.I. Shaheen;Ghada M. Hekal;Ayman M. Elshaboury;Ashraf M. Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.371-390
    • /
    • 2024
  • Investigating the impact of openings on the structural behavior of ferrocement I-beams with two distinct types of reinforcing metallic and non-metallic meshes is the primary goal of the current study. Up until failure, eight 250x200x2200 mm reinforced concrete I-beams were tested under flexural loadings. Depending on the kind of meshes used for reinforcement, the beams are split into two series. A control I-beam with no openings and three beams with one, two, and three openings, respectively, are found in each series. The two series are reinforced with three layers of welded steel meshes and two layers of tensar meshes, respectively, in order to maintain a constant reinforcement ratio. Structural parameters of investigated beams, including first crack, ultimate load, deflection, ductility index, energy absorption, strain characteristics, crack pattern, and failure mode were reported. The number of mesh layers, the volume fraction of reinforcement, and the kind of reinforcing materials are the primary factors that vary. This article presents the outcomes of a study that examined the experimental and numerical performance of ferrocement reinforced concrete I-beams with and without openings reinforced with welded steel mesh and tensar mesh separately. Utilizing ANSYS-16.0 software, nonlinear finite element analysis (NLFEA) was applied to illustrate how composite RC I-beams with openings behaved. In addition, a parametric study is conducted to explore the variables that can most significantly impact the mechanical behavior of the proposed model, such as the number of openings. The FE simulations produced an acceptable degree of experimental value estimation, as demonstrated by the obtained experimental and numerical results. It is also noteworthy to demonstrate that the strength gained by specimens without openings reinforced with tensar meshes was, on average, 22% less than that of specimens reinforced with welded steel meshes. For specimens with openings, this value is become on average 10%.

In-plane Inelastic Buckling Strength of Parabolic Arch Ribs Subjected Distributed Loading Along the Axis (아치 리브를 따라 작용하는 등분포 하중을 받는 포물선 아치 리브의 비탄성 면내좌굴 강도)

  • Yoon, Ki-Yong;Moon, Ji-Ho;Kim, Sung-Hoon;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.1 s.16
    • /
    • pp.55-62
    • /
    • 2005
  • Parabolic arch ribs are widely used in practical. In case of circular arch ribs. Inelastic in-plane buckling behaviors were investigated by Trahair(1996). Recently Yong-lin Pi & Bradford(2004) investigated about in-plane design equation for circular arch ribs. In $1970{\sim}1980$. In-plane buckling strength about parabolic arch ribs were studied by some japan researchers (Sinke, Kuranishi). Study results of Sinke & kuranishi are only valid for rise-span ratio $0.1{\sim}0.2$. In this paper. The researchers investigated about in-plane inelastic buckling behaviors of parabolic arch ribs having rise-span ratio from 0.1 to 0.4. From the results. When the rise-span ratio increase, flexural moments increase and influence of axial force to in-plane buckling strength decrease. Finally, buckling curves for parabolic arch ribs subjected distributed loading along the axis were suggested.

An Analytical Study for Unbonded Precast Column under Seismic Loading (비부착텐던 프리캐스트 교각의 내진거동에 대한 해석적 연구)

  • Choi, Seung-Won;Kim, Ik-Hyun;Cho, Jae-Yoel;Lee, Do-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.109-112
    • /
    • 2008
  • It has better seismic performance and construction performance in precast column than in conventional RC column. In this research, seismic performances of precast column are analyzed by OpenSEES. Main variables of analysis are concrete strength, jacking ratio of tendon, amount of tendon and size of segment. As the amount of tendon and jacking ratio are increased, the flexural strength is also increased. And there is very little effect as it varies concrete strength and size of segment. But high initial jacking ratio leads to early yielding of tendon. And it is considered that a size of segment is related on construction problem. And also, strain in core concrete is less than ultimate strain. Consequently, it is considered that the amount of transverse steel will be reduced.

  • PDF

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

Evaluation of Lateral-Torsional Buckling Strength of I-Girder with Corrugated Web under Uniform Bending (균일한 휨모멘트가 작용하는 파형강판 복부판 I-거더의 횡-비틂 좌굴강도 평가)

  • Moon, Ji Ho;Yi, Jong Won;Choi, Byung Ho;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2007
  • This paper presents theoretical and finite element analysis results for the lateral-torsional buckling of I-girders with corrugated web under uniform bending. Lateral-torsional buckling is a major design aspect for flexural members composed of thin-walled I-section. However, torsional rigidities such as the warping constants of the I-girders with corrugated web are not fully understood yet. In this paper, bending and pure torsional rigidities of I-girders with corrugated web are first described using the results of previous researchers. Then, the location of the shear center and the warping constants are derived. Using the derived section properties of I-girders with corrugated web, the lateral-torsional buckling strength is determined. Finite element analyses are conducted and the proposed lateral-torsional buckling strength of I-girders with corrugated web is successfully verified. Finally, the effects of corrugation profiles of the web on the lateral-torsional buckling load of I-girders with corrugated web are discussed.

Effect of rubber fiber size fraction on static and impact behavior of self-compacting concrete

  • Thakare, Akshay A.;Siddique, Salman;Singh, Amardeep;Gupta, Trilok;Chaudhary, Sandeep
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.433-450
    • /
    • 2022
  • The conventional disposal methods of waste tires are harmful to the environment. Moreover, the recycling/reuse of waste tires in domestic and industrial applications is limited due to parent product's quality control and environmental concerns. Additionally, the recycling industry often prefers powdered rubber particles (<0.60 mm). However, the processing of waste tires yields both powdered and coarser (>0.60 mm) size fractions. Reprocessing of coarser rubber requires higher energy increasing the product cost. Therefore, the waste tire rubber (WTR) less favored by the recycling industry is encouraged for use in construction products as one of the environment-friendly disposal methods. In this study, WTR fiber >0.60 mm size fraction is collected from the industry and sorted into 0.60-1.18, 1.18-2.36-, and 2.36-4.75-mm sizes. The effects of different fiber size fractions are studied by incorporating it as fine aggregates at 10%, 20%, and 30% in the self-compacting rubberized concrete (SCRC). The experimental investigations are carried out by performing fresh and hardened state tests. As the fresh state tests, the slump-flow, T500, V-funnel, and L-box are performed. As the hardened state tests, the scanning electron microscope, compressive strength, flexural strength and split tensile strength tests are conducted. Also, the water absorption, porosity, and ultrasonic pulse velocity tests are performed to measure durability. Furthermore, SCRC's energy absorption capacity is evaluated using the falling weight impact test. The statistical significance of content and size fraction of WTR fiber on SCRC is evaluated using the analysis of variance (ANOVA). As the general conclusion, implementation of various size fraction WTR fiber as fine aggregate showed potential for producing concrete for construction applications. Thus, use of WTR fiber in concrete is suggested for safe, and feasible waste tire disposal.

Compressive behavior of concrete-filled square stainless steel tube stub columns

  • Dai, Peng;Yang, Lu;Wang, Jie;Ning, Keyang;Gang, Yi
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • Concrete-filled square stainless steel tubes (CFSSST), which possess relatively large flexural stiffness, high corrosion resistance and require simple joint configurations and low maintenance cost, have a great potential in constructional applications. Despite that the use of stainless steel may result in high initial cost compared to their conventional carbon steel counterparts, the whole-life cost of CFSSST is however considered to be lower, which offers a competitive choice in engineering practice. In this paper, a comprehensive experimental and numerical program on 24 CFSSST stub column specimens, including 3 austenitic and 3 duplex stainless steel square hollow section (SHS) stub columns and 9 austenitic and 9 duplex CFSSST stub columns, has been carried out. Finite element (FE) models were developed to be used in parametric analysis to investigate the influence of the tube thickness and concrete strength on the ultimate capacities more accurately. Comparisons of the experimental and numerical results with the predictions made by design guides ACI 318, ANSI/AISC 360, Eurocode 4 and GB 50936 have been performed. It was found that these design methods generally give conservative predictions to the ultimate capacities of CFSSST stub columns. Improved calculation methods, developed based on the Continuous Strength Method, have been proposed to provide more accurate estimations of the ultimate resistances of CFSSST stub columns. The suitability of these proposals has been validated by comparison with the test results, where a good agreement between the predictions and the test results have been achieved.