• Title/Summary/Keyword: flexural mode

Search Result 421, Processing Time 0.033 seconds

Experimental assessment on flexural behavior of demountable steel-UHPC composite slabs with a novel NPR steel plate

  • Jin-Ben Gu;Jun-Yan Wang;Yi Tao;Qing-Xuan Shi
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.381-392
    • /
    • 2023
  • This study experimentally investigates the flexural behavior of steel-UHPC composite slabs composed of an innovative negative Poisson's ratio (NPR) steel plate and Ultra High Performance Concrete (UHPC) slab connected via demountable high-strength bolt shear connectors. Eight demountable composite slab specimens were fabricated and tested under traditional four-point bending method. The effects of loading histories (positive and negative bending moment), types of steel plate (NPR steel plate and Q355 steel plate) and spacings of high-strength bolts (150 mm, 200 mm and 250 mm) on the flexural behavior of demountable composite slab, including failure mode, load-deflection curve, interface relative slip, crack width and sectional strain distribution, were evaluated. The results revealed that under positive bending moment, the failure mode of composite slabs employing NPR steel plate was distinct from that with Q355 steel plate, which exhibited that part of high-strength bolts was cut off, part of pre-embedded padded extension nuts was pulled out, and UHPC collapsed due to instantaneous instability and etc. Besides, under the same spacing of high-strength bolts, NPR steel plate availably delayed and restrained the relative slip between steel plate and UHPC plate, thus significantly enhanced the cooperative deformation capacity, flexural stiffness and load capacity for composite slabs further. While under negative bending moment, NPR steel plate effectively improved the flexural capacity and deformation characteristics of composite slabs, but it has no obvious effect on the initial flexural stiffness of composite slabs. Meanwhile, the excellent crack-width control ability for UHPC endowed composite members with better durability. Furthermore, according to the sectional strain distribution analysis, due to the negative Poisson's ratio effect and high yield strength of NPR steel plate, the tensile strain between NPR steel plate and UHPC layer held strain compatibility during the whole loading process, and the magnitude of upward movement for sectional plastic neutral axis could be ignored with the increase of positive bending moment.

An Evaluation on the Flexural Strength of Concrete Beams Repaired by Polymer Resin (폴리머계로 보수한 철근콘크리트 보의 휨성능 평가)

  • Kim, Byung-Guk;Shin, Young-Soo;Hong, Gi-Suop;Hong, Yung-Kyun;Choi, Oan-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.1 no.1
    • /
    • pp.107-112
    • /
    • 1997
  • A series of reinforced concrete beams was tested to evaluate the flexural performance of the repaired RC beams. The key parameters for this study were the size and location of the patch, and the repair materials, including polymer, polymer-cementitious and cementitious materials. The repaired specimens failed by a typical flexural mode with minor interfacial bond failure. Beams repaired with polymer, polymer-cementitious and cementitious materials recover 100%, 91%, and 97% of the flexural strength respectively, while beams with cement mortar lose approximately 30% of the strength. Compared with the pressure injection techniques the specimens repaired with patching techniques show low flexural strength, with significant interfacial bond failure. Location and size of the repaired part do not affect the recovering performance. Interfacial behavior between repair and strengthening materials is the major influencing factor for the composite structures.

  • PDF

Studies on Repair of Reinforced Concrete Structures(II) - Their Influence on Flexural Performance - (철근콘크리트 구조물의 보수 공법연구(II) - 휨 거동 비교 -)

  • 김병국;신영수;홍기섭;이차돈;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.219-224
    • /
    • 1995
  • A series of 15 reinforced concrete beams was tested to explore the effects of polymer repair on damaged beams. The key parameters for this study were the repair materials, repair methods, repair depths and repair locations. The repaired specimens failed by a typical flexural mode, showing minor interface failure. The results show that epoxy, polyester resins and latex modified cementitous mortars are effective for repairing the concrete beams. The results also show that the depth and the location of the repair do not change significantly the flexural preformance of the repaired beams.

  • PDF

A Study on the Flexural Behavior of RC Slabs with Externally Bonded Aramid Fiber Sheets (AFRT로 보강된 철근콘크리트 슬래브의 휨거동에 관한 연구)

  • 박홍용;최익창;홍규창;박재홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.573-578
    • /
    • 1999
  • The reinforced concrete slabs with epoxy-bonded AFRT sheets were experimentally investigated. Experimental data on strength, stiffness, steel strain, deflection and mode of failure of strengthened slabs were obtained, and comparisons between the different flexural reinforcing schemes and reinforced concrete slabs without AFRT sheets were made. The result generally indicate that the flexural strength, ductile behavior of strengthened slabs increased.

  • PDF

Flexural Behavior of Damaged RC Beams Repaired with Epoxy Mortar System (에폭시 모르터로 보수한 손상을 입은 RC 보의 휨 거동)

  • 조하나;신영수;홍건호;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.762-767
    • /
    • 1999
  • This paper presents an experimental study on flexural behavior of damaged RC beams repaired with epoxy mortar system. The main test variables are repair length and depth. A series of 7 specimens was tested to show the corresponding effect of each variables on maximum load capacity, load-deflection relationship, and failure mode. The results of this study shows that flexural behavior of repaired RC beams changes as the repair length and depth is getting longer and deeper, so that the tension strength of repairing materials should be considered in the courses of repair design.

  • PDF

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF

Flexural Vibration of a Plate with Periodically Nonuniform Material Properties (주기적 불균일 재질 평판의 굽힘 진동 해석)

  • Kim, Jin-O.;Moon, Byung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.737-742
    • /
    • 2000
  • The paper describes a theoretical study on the flexural vibration of an elastic rectangular plate with periodically nonuniform material properties. The approximate solution of the natural frequency and mode shape has been obtained using the perturbation technique for sinusoidal modulation of the flexural rigidity and mass density. It has been shown that distributed modes exist in the plate which is a two-dimensional model of the flat panel speaker.

  • PDF

An Experimental Study on the Flexural Behavior of RC beams Strengthened by CRFP-Grid (탄소격자섬유로 보강한 RC보의 휨거동에 관한 실험적 연구)

  • 조병완;김영진;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.845-850
    • /
    • 1998
  • Flexural tests on 3.0m reinfored concrete beams with epoxy and anchor bolt bonded CFRF-Grid reported in these tests. The selected experimental variables are concrete compressive strength, strengthening length and strengthening method. The effects of these variables in overall behavior are discussed. The results generally shown that the main flexural mode of strengthened beams is separation failure. The strengthening of the chipping by the tensile bar is really necessary in order to prevent CFRP-Grid from rip-off failure.

  • PDF

An Experimental Study on Flexural/Shear Load Properties of SC(Steel Plate Concrete) Structure with Reinforced Concrete Joint (강판콘크리트 구조 이질접합부의 면외 휨/면내 전단하중 특성에 관한 실험연구)

  • Lee, Kyung-Jin;Hwang, Kyeong-Min;Hahm, Kyung-Won;Kim, Woo-Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.137-147
    • /
    • 2012
  • This paper describes an experimental study on the mechanical characteristic and behavior of a structure that has a joint between the reinforced concrete (RC) member and steel plate concrete (SC) member. An out-of-plane flexural test on an L-type test specimen and in-plane shear test on an I-type test specimen were carried out by means of repeated cyclic loading until their failure. Based on the results, the former showed pull-out failure mode of anchored vertical bars while the latter exhibited flexural failure mode of the basement member. These results reveal that the maximum capacity of the specimens is 96% and 82%, respectively, compared with the theoretical value.