• 제목/요약/키워드: flexural failure

검색결과 859건 처리시간 0.023초

반응표면분석법을 이용한 가압성형 보드의 최적 배합비 산정 (Optimization of Mixing Proportion of Press-forming Board by Response Surface Methodology)

  • 이준철;김진성;이보경;최형길
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.182-183
    • /
    • 2019
  • In this study, the optimization of mixing proportion of press-forming board with blast furnace slag, pearlite and bottom ash was investigated using the response surface methodology. Ten Mixing proportions of specimens were designed by the response surface design, and then flexural failure load, moisture content and water absorption of specimens were measured. As a result of the reaction surface analysis based on the experimental results, it was possible to derive the optimal mixing proportion with the satisfaction of 93%.

  • PDF

Flexural behavior of partially-restrained semirigid steel connections

  • Campione, G.;Scibilia, N.
    • Steel and Composite Structures
    • /
    • 제1권4호
    • /
    • pp.441-458
    • /
    • 2001
  • We analyzed the experimental and theoretical behavior of a particular type of steel joint designed to connect beam to beam and able to transfer both shear forces and bending moments. This joint is characterized by the use of steel plates and bolts enclosed in the width of the beams. The experimental investigation was carried out characterizing the constituent materials and testing in flexure beams constituted by two portions of beams connected in the middle with the joint proposed. Connections having different characteristics in terms of thickness of plates, number and type of bolts were utilized. Flexure tests allow one to determine the loaddeflection curves of the beam tested and the moment-rotation diagrams of the connections, highlighting the strength and the strain capacity of the joints. The proposed analytical model allows one to determine the moment-rotation relationship of the connections, pointing out the influence of the principal geometrical and mechanic characteristics of single constituents on the full properties of the joint.

Analytical study of buckling profile web stability

  • Taleb, Chems eddine;Ammari, Fatiha;Adman, Redouane
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.147-158
    • /
    • 2015
  • Elements used in steel structures may be considered as an assembly of number of thin flat walls. Local buckling of these members can limit the buckling capacity of axial load resistance or flexural strength. We can avoid a premature failure, caused by effects of local buckling, by limiting the value of the wall slenderness which depend on its critical buckling stress. According to Eurocode 3, the buckling stress is calculated for an internal wall assuming that the latter is a simply supported plate on its contour. This assumption considers, without further requirement, that the two orthogonal walls to this wall are sufficiently rigid to constitute fixed supports to it. In this paper, we focus on webs of steel profiles that are internal walls delimited by flanges profiles. The objective is to determine, for a given web, flanges dimensions from which the latter can be considered as simple support for this web.

Steel-CFRP composite and their shear response as vertical stirrup in beams

  • Uriayer, Faris A.;Alam, Mehtab
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1145-1160
    • /
    • 2015
  • An experimental study was conducted for the effectiveness of steel-CFRP composite (CFRP laminates sandwiched between two steel strips) as stirrups in concrete beam to carry shearing force and comparison was made with conventional steel bar stirrups. A total numbers of 8 concrete beams were tested under four point loads. Each beam measured 1,600 mm long, 160 mm width and 240 mm depth. The beams were composed of same grade of concrete, with same amount of flexural steel but different shear reinforcements. The main variables include, type of stirrups (shape of stirrups and number of CFRP layers used in each stirrup) and number of stirrups used in shear spans. After getting on an excellent closeness between the values of ultimate shear resistance and ultimate tensile load of steel-CFRP stirrups, it could be concluded that the steel-CFRP stirrups represent the effective solution of premature failure of FRP stirrups at the bends.

RC beams retrofitted using external bars with additional anchorages-a finite element study

  • Vasudevan, G.;Kothandaraman, S.
    • Computers and Concrete
    • /
    • 제16권3호
    • /
    • pp.415-428
    • /
    • 2015
  • Study on flexural retrofitting of RC beams using external bars with additional intermediate anchorages at soffit is reported in this paper. Effects of varying number of anchorages in the external bars at soffit were studied by finite element analysis using ANSYS 12.0 software. The results were also compared with available experimental results for beam with only two end anchorages. Two sets of reference and retrofitted beam specimens with two, three, four and five anchorages were analysed and the results are reported. FE modeling and non-linear analysis was carried out by discrete reinforcement modeling using Solid65, Solid45 and Link8 elements. Combin39 spring elements were used for modeling the frictional contact between the soffit and the external bars. The beam specimens were subjected to four-point bending and incremental loading was applied till failure. The entire process of modeling, application of incremental loading and generation of output in text and graphical format were carried out using ANSYS Parametric Design Language.

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • 제15권3호
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

Flexural ductility of HSC members

  • Maghsoudi, A.A.;Bengar, H. Akbarzadeh
    • Structural Engineering and Mechanics
    • /
    • 제24권2호
    • /
    • pp.195-212
    • /
    • 2006
  • In seismic areas, ductility is an important factor in design of high strength concrete (HSC) members under flexure. A number of twelve HSC beams with different percentage of ${\rho}$ & ${\rho}^{\prime}$ were cast and incrementally loaded under bending. The effect of ${\rho}^{\prime}$ on ductility of members were investigated both qualitatively and quantitatively. During the test, the strain on the concrete middle faces, on the tension and compression bars, and also the deflection at different points of the span length were measured up to failure. Based on the obtained results, the serviceability and ultimate behavior, and especially the ductility of the HSC members are more deeply reviewed. Also a comparison between theoretical and experimental results are reported here.

슬래브-기둥 접합부의 뚫림 전단강도에 대한 래티스 보강상세의 영향 (Effects of details of lattice reinforcement for punching shear strength of slab-column connections)

  • 김유니;박홍근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.17-20
    • /
    • 2006
  • A flat plate-column connection is susceptible to brittle punching shear failure, which may result in the necessity of shear reinforcement. In previous, experimental tests were performed to study the capacity of slab-column connections strengthened with various shear reinforcement, and the capacity of the specimens with lattice reinforcement are superior to the others. In present study, to study for effects of details of lattice reinforcement, experimental studies was performed. Main parameters are the amount of lattice shear reinforcement, arrangement of lattice and the effect of flexural re-bar. And capacity of the specimen with small amount of lattice reinforcement was higher than the capacity of other shear reinforcement.

  • PDF

피로하중을 받는 유리섬유 보강 플라스틱관의 안전성에 관한 연구 (An Experimental Study on the Safety of Glass Fiber Reinforced Plastic Pipes under Fatigue Load)

  • 채원규
    • 한국안전학회지
    • /
    • 제11권3호
    • /
    • pp.154-159
    • /
    • 1996
  • In this thesis, a series of loading tests are conducted in order to investigate the fracture safety of GFRP(Glass Fiber Reinforced Plastics) pipes under fatigue load which are widely used in the developed countries becauses of their natural of anticorrosion and lightweight etc. . Fatigue test is performed by changing number of laminates and loading cycles to examine the flexural strains, the ductility and the fatigue strength for two million repeated loading cycles. From the fatigue test results, it was found that the larger the laminates of GFRP pipes is, the larger the stiffness of GFRP pipes under the fatigue load increases. This phenomenon is true until the fatigue failure. According to the S-N curve drawn by the regression analysis on the fatigue test results, the fatigue strength of percent of the static ultimate strength increases by increasing the laminates of GFRP pipes. The fatigue strength with two million repeated leading cycles in GFRP pipes with the laminates of GFRP pipes varing 15, 25, 35 shows about 75%, 80%, 84% on the static ultimate strength, respectively.

  • PDF

탄소섬유판을 이용한 철근콘크리트 보의 휨 보강 성능 (Flexural Rehabilitation Performance of Reinforced Concrete Beams Strengthened with Carbon Fiber Laminate)

  • 정란;김성철;이희경;유성훈;김중구
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권1호
    • /
    • pp.121-128
    • /
    • 1999
  • In this study, the behavior of R/C beams strengthened with carbon fiber laminate (CFL) is analyzed from the test results. CFL is attractive for this application due to its good tensile strength and low weight. Test parameters are the width and the thickness of CFL and repair of damaged specimen. The failure mode and ultimate load are analyzed from these measured data. Test results show that the peak load of specimens strengthened with CFL is increased to 1.27~2.04 times that of non-rehabilitation specimen. The wider lap width, larger amount of CFL, the larger strength is obtained. But the ductile behavior of the rehabilitated specimens is inversely proportional to the CFL thickness.

  • PDF