• Title/Summary/Keyword: flexural failure

Search Result 859, Processing Time 0.024 seconds

Effect of Steel Reinforcement Ratio on the Flexural Behavior of RC Beams Strengthened with CFRP Sheets (탄소섬유쉬트로 보강된 RC부재의 철근량에 따른 휨 보강성능)

  • You, Young-Chan;Choi, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.177-180
    • /
    • 2006
  • Experimental study has been performed in order to evaluate the effects of steel reinforcement ratio on the flexural behavior of RC beams strengthened with CFRP sheets. The steel reinforcement ratio of $0.78%({\rho}_s/{\rho}_b=24%)$ is selected to have balance failure when control RC beams were strengthened with 1 ply CFRP sheet. Total 6 half-scale specimens were manufactured including each unstrengthened specimens, which have 3 different reinforcement ratios. The specimens strengthened with CFRP sheet consist of under- or over-reinforced beams for the balanced failure condition. Moreover, the behavior of un strengthened or strengthened beams were compared to evaluate flexural performance. The results of this study show that the over-reinforced specimens were failed by concrete crushing prior to CFRP sheet failure by debonding or rupture. On the contrary, the under-reinforced specimen were failed by rupture of CFRP sheet.

  • PDF

Effect of Span-to-Depth Ratio on Behavior and Capacity in Composite Structure of Sandwich System (샌드위치식 복합구조체의 셀(Cell)형상비가 거동과 성능에 미치는 영향)

  • 정연주;정광회;김병석;박성수;황일선
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.73-78
    • /
    • 2000
  • This paper describes the effect of span-to-depth ratio, which describes aspect of cell formed with top diaphragm steel plate, on capacity in composite steel-concrete structure of sandwich system. The span-to-depth ratio \ulcorner load-carrying mechanism and load-distribution capacity of structure. Therefore, stress levels of members and load-resis\ulcorner of system vary according to span-depth ratio. In this study, numerical nonlinear analysis was performed to various ratio for two types(MA, MB) composite structure of sandwich system to analyze the influence of span-to-depth ratio or, behavior. The difference of load-carrying mechanism and stress of members results from analysis results, then bas\ulcorner differences, the effects of span-to-depth ratio on shear capacity, flexural capacity and load-resistance capacity were analyze effects on failure mode and ductility were briefly. As a results of this study, as span-to-depth ratio increases, \ulcorner bottom steel plate and concrete lower. This implies an increase in effective flexural and shear capacity. Therefore lo\ulcorner capacity of structure improves as span-to-depth ratio increases, Especially, the effect is greate in shear than flexural span-to-depth ratio increases, this difference between flexural and shear capacity may change failure mode and ductility. span-to-depth ratio increases capacity increases more than flexural capacity, we should expect that structural behavior mode gradually change from shear to flexural and ductility of structure gradually improves.

  • PDF

An Experimental Study to Prevent Debdonding Failure of RC Beams Strengthened by Aramid Fiber Sheets (아라미드섬유쉬트로 휨 보강된 RC보의 부착파괴 방지 상세에 관한 실험적 연구)

  • Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.84-87
    • /
    • 2004
  • Nominal flexural strength of RC members strengthened with FRP sheets is generally based on the tensile strength of composite materials obtained from coupon tests. This method is based on the assumption that bond failure does not occur until the FRP sheet reaches its rupture strength. According to the previous researches, however, bond failure often occurs before the FRP sheet reaches its rupture strength. Some attempts were made to control debonding failure by increasing the bonded length of sheet or wrapping the section around their side of the member(U-wrap). In this study, the flexural failure mechanism of RC beams strengthened with AFRP sheets with different bond lengths is investigated. Their strengthening details to prevent the premature debonding failure are also suggested and its effectiveness is verified.

  • PDF

An Analytical Model on the Interface Debonding Failure of RC Beams Strengthened by GFRP (GFRP로 보강된 RC보의 계면박리파괴 해석모델)

  • 김규선;심종성
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.69-80
    • /
    • 1999
  • The strengthening of reinforced concrete structures by externally bonded GFRP has become increasingly common in resent years. However the analysis and design method for GFRP plate strengthening of RC beams is not well established yet. The purpose of present paper is, therefore, to define the failure mechanism and failure behavior of strengthened RC beam using GFRP and then to propose a resonable method for the calculation of interface debonding load for those beams. From the experimental results of beams strengthened by GFRP, the influence of length and thickness, width of plate on the interfacial debonding failure behavior of beam is studied and, on the basis of test results, the semi-empirical equation to predict debonding load is developed. The proposed theory based on nonlinear analysis and critical flexural crack width, predicts relatively well the debonding failure load of test beams and may be efficiently used in the analysis and design of strengthened RC beams using GFRP.

Cracking in reinforced concrete flexural members - A reliability model

  • Rao, K. Balaji;Rao, T.V.S.R. Appa
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.303-318
    • /
    • 1999
  • Cracking of reinforced concrete flexural members is a highly random phenomenon. In this paper reliability models are presented to determine the probabilities of failure of flexural members against the limit states of first crack and maximum crackwidth. The models proposed take into account the mechanism of cracking. Based on the reliability models discussed, Eqs. (8) and (9) useful in the reliability-based design of flexural members are presented.

Flexural strength of concrete-galvalume composite beam under elevated temperatures

  • Maryoto, Agus;Lie, Han Ay;Jonkers, Hendrik Marius
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 2021
  • In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.

Moment Capacity of Reinforced Concrete Members Strengthened with FRP (FRP 보강 철근콘크리트 부재의 휨모멘트)

  • Cho, Baik-Soon;Kim, Seong-Do;Back, Sung-Yong;Choi, Eun-Soo;Choi, Yong-Ju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.315-323
    • /
    • 2010
  • Five concrete compressive stress-strain models have been analyzed to check the validity of the strength method for determining the nominal moment of strengthened members using commercially available computer language. The results show that the concrete stress-strain models do not influence on the flexural analysis. The moment of a strengthened member obtained from the flexural analysis at concrete compressive strain reaching 0.003 is well agreed with nominal moment using the strength method. The flexural analysis results show that when the steel reinforcement, FRP ratio, FRP failure strain, and concrete failure compressive strain are relatively lower, the strength method overestimates the flexural capacity of the strengthened members.

Flexural behaviors of full-scale prestressed high-performance concrete box girders

  • Gou, Hongye;Gu, Jie;Ran, Zhiwen;Bao, Yi;Pu, Qianhui
    • Structural Engineering and Mechanics
    • /
    • v.75 no.5
    • /
    • pp.595-605
    • /
    • 2020
  • In this study, the flexural behaviors of full-scale prestressed concrete box girders are experimentally investigated. Four girders were fabricated using two types of concrete (compressive strengths: 50 MPa and 70 MPa) and tested under four-point bending until failure. The measured parameters included the deflection, the stress and strain in concrete and steel bars, and cracks in concrete. The measurement results were used to analyze the failure mode, load-bearing capacity, and deformability of each girder. A finite element model is established to simulate the flexural behaviors of the girders. The results show that the use of high-performance concrete and reasonable combination of prestressed tendons could improve the mechanical performance of the box girders, in terms of the crack resistance, load-carrying capacity, stress distribution, and ductility.

Damage Assessment of Reinforced Concrete Beams Under Flexural Failure Mode Using Acoustic Emission Testing (음향방출 기술을 이용한 철근콘크리트 보의 휨 파괴 손상평가)

  • David Kim;Seonglo Lee;Wonsuk Park
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.2
    • /
    • pp.36-43
    • /
    • 2023
  • In this study, a four-point bending test was conducted to assess and detect the damage to reinforced concrete structures using the acoustic emission (AE) technique. Based on the crack investigation results, flexural failure was classified into four stages and compared with the characteristic analysis results of AE parameters. The parametric characterization indicated that the activity of the primary AE signal was high in the early stage, and that of the second signal increased after the flexural cracks stabilized. Because the secondary AE signal included noise generated by friction, parameter-based analysis for damage assessment was performed using the primary signal; the secondary signal was used as complement. The activity analyses of the primary and secondary signals effectively classified crack propagation; however, determining the macrocracks and yielding of reinforcing bars had certain limitations. Nevertheless, applying the damage index with cumulative AE energy is a complementary technique for detecting and assessing structure damage that well detects the occurrence of macrocracks.

Flexural ductility of reinforced HSC beams strengthened with CFRP sheets

  • Hashemi, Seyed Hamid;Maghsoudi, Ali Akbar;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • v.30 no.4
    • /
    • pp.403-426
    • /
    • 2008
  • Externally bonding fiber reinforced polymer (FRP) sheets with an epoxy resin is an effective technique for strengthening and repairing reinforced concrete (RC) beams under flexural loads. Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of RC structures. The objective of this investigation is to study the effectiveness of CFRP sheets on ductility and flexural strength of reinforced high strength concrete (HSC) beams. This objective is achieved by conducting the following tasks: (1) flexural four-point testing of reinforced HSC beams strengthened with different amounts of cross-ply of CFRP sheets with different amount of tensile reinforcement up to failure; (2) calculating the effect of different layouts of CFRP sheets on the flexural strength; (3) Evaluating the failure modes; (4) developing an analytical procedure based on compatibility of deformations and equilibrium of forces to calculate the flexural strength of reinforced HSC beams strengthened with CFRP composites; and (5) comparing the analytical calculations with experimental results.