References
- ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, ACI 318-14, American Concrete Institute, Farmington Hills, MI, USA.
- Bailey, C.G., White, D.S. and Moore, D.B. (2000), "The tensile membrane action of unrestrained composite slabs simulated under fire conditions", Eng. Struct., 22, 1583-1595. https://doi.org/10.1016/S0141-0296(99)00110-8.
- Bednar, J., Wald, F., Vodicka, J. and Kohoutkova, A. (2013), "Experiments on membrane action of composite floors with steel fibre reinforced concrete slab exposed to fire", Fire Saf. J., 59, 111-121. https://doi.org/10.1016/j.firesaf.2013.04.008.
- Cai, W., Morovat, M.A. and Engelhardt, M.D. (2017), "True stress-strain curves for ASTM A992 steel for fracture simulation at elevated temperatures", J. Constr. Steel Res., 139, 272-279. https://doi.org/10.1016/j.jcsr.2017.09.024.
- Canbaz, M., Dakman, H., Arslan, B. and Buyuksungur, A. (2019), "The effect of high-temperature on foamed concrete", Comput. Concrete, 24(1), 1-6. https://doi.org/10.12989/cac.2019.24.1.001
- Cervenka, V., Jendele, L. and Cervenka, J. (2009), ATENA Program Documentation: Part I Theory, Cervenka Consulting, Praha.
- Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36, 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.
- Chen, J. and Young, B. (2006), "Stress-strain curves for stainless steel at elevated temperatures", Eng. Struct., 28(2), 229-239. https://doi.org/10.1016/j.engstruct.2005.07.005.
- Dzolev, I.M., Cvetkovska, M.J. and Radonjanin, V.S. (2018), "Numerical analysis on the behaviour of reinforced concrete frame structures in fire", Comput. Concete, 21(6), 637-647. https://doi.org/10.12989/cac.2018.21.6.637
- Gardner, L., Bu, Y., Francis, P., Badoo, N.R., Cashell, K.A. and McCann, F. (2016), "Elevated temperature material properties of stainless steel reinforcing bar", Constr. Build. Mater., 114, 977-997. https://doi.org/10.1016/j.conbuildmat.2016.04.009.
- Gulsan, M.E., Abdulhaleem, K.N., Kurtoglu, A.E and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced SelfCompacting Concrete (SCC) after exposure to high temperatures", Comput. Concete, 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681
- Guo, S. (2012), "Experimental and numerical study on restrained composite slab during heating and cooling", J. Constr. Steel Res., 69(1), 95-105. https://doi.org/10.1016/j.jcsr.2011.08.009.
- Guruprasad, Y.K. and Ramaswamy, A. (2018), "Micromechanical analysis of concrete and reinforcing steel exposed to high temperature", Constr. Build. Mater., 158, 761-773. https://doi.org/10.1016/j.conbuildmat.2017.10.061.
- Haryanto, Y., Gan, B.S., Widyaningrum, A. and Maryoto, A. (2017), "Near surface mounted bamboo reinforcement for flexural strengthening of reinforced concrete beams", J. Tek., 79(6), 233-240.
- Hassine, W.B., Loukil, M. and Limam, O. (2019), "A damage model predicting moderate temperature and size effects on concrete in compression", Comput. Concete, 23(5), 321-327. https://doi.org/10.12989/cac.2019.23.5.321
- Jiang, J., Joseph, A.M., Jonathan, M.W. and Fahim, H.S. (2017), "Thermal performance of composite slabs with profiled steel decking exposed to fired effects", Fire Saf. J., 95, 24-41. https://doi.org/10.1016/j.firesaf.2017.10.003.
- Jiang, J., Main, J.A., Sadek, F. and Weigand, J.M. (2017), "Numerical modeling and analysis of heat transfer in composite slabs with profiled steel decking", NIST Technical Note 1958, National Institute of Standards and Technology, Gaithersburg, MD.
- Jiang, J., Main, J.A., Weigand, J.M. and Sadek, F.H. (2018), "Thermal performance of composite slabs with profiled steel decking exposed to fire effects", Fire Saf. J., 95, 25-41. https://doi.org/10.1016/j.firesaf.2017.10.003.
- Jiangtao, Y.U., Zhaoudao, L.U. and Xiang K. (2011), "Experimental study on the performance of rc continuous members in bending after exposure to fire", Procedia Eng., 14, 821-829. https://doi.org/10.1016/j.proeng.2011.07.104.
- Kim, S., Oli, T. and Park, C. (2020), "Effect of exposure to high temperture on the mechanical properties of SiFRCCs", Appl. Sci., 10, 1-10. https://doi.org/10.3390/app10062142.
- Li, G.Q., Zhang, N. and Jiang, J. (2017), "Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire", Fire Saf. J., 89, 63-76. https://doi.org/10.1016/j.firesaf.2017.02.009.
- Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
- Maryoto, A. and Shimomura, T. (2017), "Effect of prestressed force and size of reinforcement on corrosion crack width in concrete member", J. Eng. Sci. Tech., 12(10), 2664-2675.
- Meraji, L., Afshin, H. and Abedi, K. (2019), "Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced cocnrete", Comput. Concete, 24(2), 159-172. https://doi.org/10.12989/cac.2019.24.2.159.
- Mundhada, A.R. and Pofale, A.D. (2015), "Effect of high temperature on compressive strength of concrete", IOSR J. Mech. Civil Eng., 12(1), 66-70. https://doi.org/10.9790/1684-12126670.
- Nematzadeh, M. and Nasiri, A.B. (2019), "Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures", Comput. Concete, 24(1), 19-35. https://doi.org/10.12989/cac.2019.24.1.019.
- Netinger, I., Kesegic, I. and Guljas, I. (2011), "The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates", Fire Saf. J., 46(7), 425-430. https://doi.org/10.1016/j.firesaf.2011.07.002.
- Nguyen, M.P., Nguyen, T.T. and Tan, K.H. (2018), "Temperature profile and resistance of flat decking composite slabs in- and post-fire", Fire Saf. J., 98, 109-119. https://doi.org/10.1016/j.firesaf.2018.04.001.
- Pazdera, L., Topolar, L., Mikulasek, K., Smutny, J. and Seelmann, H. (2017), "Non-linear characteristics of temperature degraded concrete at high temperature", Procedia Eng., 190, 100-105. https://doi.org/10.1016/j.proeng.2017.05.313.
- Priastiwi, Y.A., Han, A.L., Maryoto, A. and Noor, E.S. (2017), "Experimental study on the use of steel-decks for prefabricated reinforced concrete beams", IOP Conf. Ser. Mater. Sci. Eng., 271, 1-8. https://doi.org/10.1088/1757-899X/271/1/012095.
- Robert, M. and Benmokrane, B. (2010), "Behavior of GFRP reinforcing bars subjected to extreme temperatures", J. Compos. Constr., 14(4), 353-360. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000092.
- Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concete, 24(1), 63-67. https://doi.org/10.12989/cac.2019.24.1.063.
- Tao, Z., Wang, X.Q., Hassan. M.K., Song, T.Y. and Xie, L.A. (2019), "Behaviour of three types of stainless steel after exposure to elevated temperatures", J. Constr. Steel Res., 152, 296-311. https://doi.org/10.1016/j.jcsr.2018.02.020.
- Widhianto, A., Darmayadi, D. and Asfari, G.D. (2014), "Fire resistance of normal and high-strength concrete with contains of steel fibre", Asian J. Civil Eng., 15(5), 655-669.
- Yan, L.L., Liang, J.F. and Zhao, Y.G. (2019), "Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete", Comput. Concete, 23(3), 155-160. https://doi.org/10.12989/cac.2019.23.3.155
- Zeng, X., Jiang, S.F. and Zhou, D. (2019), "Effect of shear connector layout on the behavior of steel-concrete composite beams with interface slip", Appl. Sci., 9(207), 1-17. https://doi.org/10.3390/app9010207
- Zhou, H., Li, S. and Zhang, C. (2018), "Fire tests on composite steel-concrete beams prestressed with external tendons", J. Constr. Steel Res., 143, 62-71. https://doi.org/10.1016/j.jcsr.2017.12.008.