DOI QR코드

DOI QR Code

Flexural strength of concrete-galvalume composite beam under elevated temperatures

  • Maryoto, Agus (Department of Civil Engineering, Universitas Jenderal Soedirman) ;
  • Lie, Han Ay (Department of Civil Engineering, Diponegoro University) ;
  • Jonkers, Hendrik Marius (Department of Civil Engineering and Geoscience, Delf Technical University)
  • Received : 2020.05.22
  • Accepted : 2020.12.03
  • Published : 2021.01.25

Abstract

In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.

Keywords

References

  1. ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, ACI 318-14, American Concrete Institute, Farmington Hills, MI, USA.
  2. Bailey, C.G., White, D.S. and Moore, D.B. (2000), "The tensile membrane action of unrestrained composite slabs simulated under fire conditions", Eng. Struct., 22, 1583-1595. https://doi.org/10.1016/S0141-0296(99)00110-8.
  3. Bednar, J., Wald, F., Vodicka, J. and Kohoutkova, A. (2013), "Experiments on membrane action of composite floors with steel fibre reinforced concrete slab exposed to fire", Fire Saf. J., 59, 111-121. https://doi.org/10.1016/j.firesaf.2013.04.008.
  4. Cai, W., Morovat, M.A. and Engelhardt, M.D. (2017), "True stress-strain curves for ASTM A992 steel for fracture simulation at elevated temperatures", J. Constr. Steel Res., 139, 272-279. https://doi.org/10.1016/j.jcsr.2017.09.024.
  5. Canbaz, M., Dakman, H., Arslan, B. and Buyuksungur, A. (2019), "The effect of high-temperature on foamed concrete", Comput. Concrete, 24(1), 1-6. https://doi.org/10.12989/cac.2019.24.1.001
  6. Cervenka, V., Jendele, L. and Cervenka, J. (2009), ATENA Program Documentation: Part I Theory, Cervenka Consulting, Praha.
  7. Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36, 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.
  8. Chen, J. and Young, B. (2006), "Stress-strain curves for stainless steel at elevated temperatures", Eng. Struct., 28(2), 229-239. https://doi.org/10.1016/j.engstruct.2005.07.005.
  9. Dzolev, I.M., Cvetkovska, M.J. and Radonjanin, V.S. (2018), "Numerical analysis on the behaviour of reinforced concrete frame structures in fire", Comput. Concete, 21(6), 637-647. https://doi.org/10.12989/cac.2018.21.6.637
  10. Gardner, L., Bu, Y., Francis, P., Badoo, N.R., Cashell, K.A. and McCann, F. (2016), "Elevated temperature material properties of stainless steel reinforcing bar", Constr. Build. Mater., 114, 977-997. https://doi.org/10.1016/j.conbuildmat.2016.04.009.
  11. Gulsan, M.E., Abdulhaleem, K.N., Kurtoglu, A.E and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced SelfCompacting Concrete (SCC) after exposure to high temperatures", Comput. Concete, 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681
  12. Guo, S. (2012), "Experimental and numerical study on restrained composite slab during heating and cooling", J. Constr. Steel Res., 69(1), 95-105. https://doi.org/10.1016/j.jcsr.2011.08.009.
  13. Guruprasad, Y.K. and Ramaswamy, A. (2018), "Micromechanical analysis of concrete and reinforcing steel exposed to high temperature", Constr. Build. Mater., 158, 761-773. https://doi.org/10.1016/j.conbuildmat.2017.10.061.
  14. Haryanto, Y., Gan, B.S., Widyaningrum, A. and Maryoto, A. (2017), "Near surface mounted bamboo reinforcement for flexural strengthening of reinforced concrete beams", J. Tek., 79(6), 233-240.
  15. Hassine, W.B., Loukil, M. and Limam, O. (2019), "A damage model predicting moderate temperature and size effects on concrete in compression", Comput. Concete, 23(5), 321-327. https://doi.org/10.12989/cac.2019.23.5.321
  16. Jiang, J., Joseph, A.M., Jonathan, M.W. and Fahim, H.S. (2017), "Thermal performance of composite slabs with profiled steel decking exposed to fired effects", Fire Saf. J., 95, 24-41. https://doi.org/10.1016/j.firesaf.2017.10.003.
  17. Jiang, J., Main, J.A., Sadek, F. and Weigand, J.M. (2017), "Numerical modeling and analysis of heat transfer in composite slabs with profiled steel decking", NIST Technical Note 1958, National Institute of Standards and Technology, Gaithersburg, MD.
  18. Jiang, J., Main, J.A., Weigand, J.M. and Sadek, F.H. (2018), "Thermal performance of composite slabs with profiled steel decking exposed to fire effects", Fire Saf. J., 95, 25-41. https://doi.org/10.1016/j.firesaf.2017.10.003.
  19. Jiangtao, Y.U., Zhaoudao, L.U. and Xiang K. (2011), "Experimental study on the performance of rc continuous members in bending after exposure to fire", Procedia Eng., 14, 821-829. https://doi.org/10.1016/j.proeng.2011.07.104.
  20. Kim, S., Oli, T. and Park, C. (2020), "Effect of exposure to high temperture on the mechanical properties of SiFRCCs", Appl. Sci., 10, 1-10. https://doi.org/10.3390/app10062142.
  21. Li, G.Q., Zhang, N. and Jiang, J. (2017), "Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire", Fire Saf. J., 89, 63-76. https://doi.org/10.1016/j.firesaf.2017.02.009.
  22. Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.
  23. Maryoto, A. and Shimomura, T. (2017), "Effect of prestressed force and size of reinforcement on corrosion crack width in concrete member", J. Eng. Sci. Tech., 12(10), 2664-2675.
  24. Meraji, L., Afshin, H. and Abedi, K. (2019), "Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced cocnrete", Comput. Concete, 24(2), 159-172. https://doi.org/10.12989/cac.2019.24.2.159.
  25. Mundhada, A.R. and Pofale, A.D. (2015), "Effect of high temperature on compressive strength of concrete", IOSR J. Mech. Civil Eng., 12(1), 66-70. https://doi.org/10.9790/1684-12126670.
  26. Nematzadeh, M. and Nasiri, A.B. (2019), "Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures", Comput. Concete, 24(1), 19-35. https://doi.org/10.12989/cac.2019.24.1.019.
  27. Netinger, I., Kesegic, I. and Guljas, I. (2011), "The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates", Fire Saf. J., 46(7), 425-430. https://doi.org/10.1016/j.firesaf.2011.07.002.
  28. Nguyen, M.P., Nguyen, T.T. and Tan, K.H. (2018), "Temperature profile and resistance of flat decking composite slabs in- and post-fire", Fire Saf. J., 98, 109-119. https://doi.org/10.1016/j.firesaf.2018.04.001.
  29. Pazdera, L., Topolar, L., Mikulasek, K., Smutny, J. and Seelmann, H. (2017), "Non-linear characteristics of temperature degraded concrete at high temperature", Procedia Eng., 190, 100-105. https://doi.org/10.1016/j.proeng.2017.05.313.
  30. Priastiwi, Y.A., Han, A.L., Maryoto, A. and Noor, E.S. (2017), "Experimental study on the use of steel-decks for prefabricated reinforced concrete beams", IOP Conf. Ser. Mater. Sci. Eng., 271, 1-8. https://doi.org/10.1088/1757-899X/271/1/012095.
  31. Robert, M. and Benmokrane, B. (2010), "Behavior of GFRP reinforcing bars subjected to extreme temperatures", J. Compos. Constr., 14(4), 353-360. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000092.
  32. Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concete, 24(1), 63-67. https://doi.org/10.12989/cac.2019.24.1.063.
  33. Tao, Z., Wang, X.Q., Hassan. M.K., Song, T.Y. and Xie, L.A. (2019), "Behaviour of three types of stainless steel after exposure to elevated temperatures", J. Constr. Steel Res., 152, 296-311. https://doi.org/10.1016/j.jcsr.2018.02.020.
  34. Widhianto, A., Darmayadi, D. and Asfari, G.D. (2014), "Fire resistance of normal and high-strength concrete with contains of steel fibre", Asian J. Civil Eng., 15(5), 655-669.
  35. Yan, L.L., Liang, J.F. and Zhao, Y.G. (2019), "Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete", Comput. Concete, 23(3), 155-160. https://doi.org/10.12989/cac.2019.23.3.155
  36. Zeng, X., Jiang, S.F. and Zhou, D. (2019), "Effect of shear connector layout on the behavior of steel-concrete composite beams with interface slip", Appl. Sci., 9(207), 1-17. https://doi.org/10.3390/app9010207
  37. Zhou, H., Li, S. and Zhang, C. (2018), "Fire tests on composite steel-concrete beams prestressed with external tendons", J. Constr. Steel Res., 143, 62-71. https://doi.org/10.1016/j.jcsr.2017.12.008.