Browse > Article
http://dx.doi.org/10.12989/cac.2021.27.1.013

Flexural strength of concrete-galvalume composite beam under elevated temperatures  

Maryoto, Agus (Department of Civil Engineering, Universitas Jenderal Soedirman)
Lie, Han Ay (Department of Civil Engineering, Diponegoro University)
Jonkers, Hendrik Marius (Department of Civil Engineering and Geoscience, Delf Technical University)
Publication Information
Computers and Concrete / v.27, no.1, 2021 , pp. 13-20 More about this Journal
Abstract
In this paper, the elevated temperature on a concrete-galvalume composite beam's flexural strength based on the numerical and experimental methods is investigated. The strategy is to perform modeling and simulation of the flexural test based on finite element method (FEM) at room temperature and validate its results to experimental data at the same temperature. When the numerical model was proven valid, the model was utilized to simulate the effect of elevated temperatures on the composite element. The study concludes that the flexural strength of the beam decreases at higher temperature. Additionally, it was shown that cracking moments is susceptible to temperature fluctuation and the failure modes are sensitive concerning the elevated temperature.
Keywords
concrete-galvalume composite; elevated temperature; flexure strength; FEM; failure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, H., Li, S. and Zhang, C. (2018), "Fire tests on composite steel-concrete beams prestressed with external tendons", J. Constr. Steel Res., 143, 62-71. https://doi.org/10.1016/j.jcsr.2017.12.008.   DOI
2 ACI 318 (2014), Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary, ACI 318-14, American Concrete Institute, Farmington Hills, MI, USA.
3 Bailey, C.G., White, D.S. and Moore, D.B. (2000), "The tensile membrane action of unrestrained composite slabs simulated under fire conditions", Eng. Struct., 22, 1583-1595. https://doi.org/10.1016/S0141-0296(99)00110-8.   DOI
4 Bednar, J., Wald, F., Vodicka, J. and Kohoutkova, A. (2013), "Experiments on membrane action of composite floors with steel fibre reinforced concrete slab exposed to fire", Fire Saf. J., 59, 111-121. https://doi.org/10.1016/j.firesaf.2013.04.008.   DOI
5 Cai, W., Morovat, M.A. and Engelhardt, M.D. (2017), "True stress-strain curves for ASTM A992 steel for fracture simulation at elevated temperatures", J. Constr. Steel Res., 139, 272-279. https://doi.org/10.1016/j.jcsr.2017.09.024.   DOI
6 Canbaz, M., Dakman, H., Arslan, B. and Buyuksungur, A. (2019), "The effect of high-temperature on foamed concrete", Comput. Concrete, 24(1), 1-6. https://doi.org/10.12989/cac.2019.24.1.001   DOI
7 Cervenka, V., Jendele, L. and Cervenka, J. (2009), ATENA Program Documentation: Part I Theory, Cervenka Consulting, Praha.
8 Chang, Y.F., Chen, Y.H., Sheu, M.S. and Yao, G.C. (2006), "Residual stress-strain relationship for concrete after exposure to high temperatures", Cement Concrete Res., 36, 1999-2005. https://doi.org/10.1016/j.cemconres.2006.05.029.   DOI
9 Chen, J. and Young, B. (2006), "Stress-strain curves for stainless steel at elevated temperatures", Eng. Struct., 28(2), 229-239. https://doi.org/10.1016/j.engstruct.2005.07.005.   DOI
10 Dzolev, I.M., Cvetkovska, M.J. and Radonjanin, V.S. (2018), "Numerical analysis on the behaviour of reinforced concrete frame structures in fire", Comput. Concete, 21(6), 637-647. https://doi.org/10.12989/cac.2018.21.6.637   DOI
11 Gardner, L., Bu, Y., Francis, P., Badoo, N.R., Cashell, K.A. and McCann, F. (2016), "Elevated temperature material properties of stainless steel reinforcing bar", Constr. Build. Mater., 114, 977-997. https://doi.org/10.1016/j.conbuildmat.2016.04.009.   DOI
12 Gulsan, M.E., Abdulhaleem, K.N., Kurtoglu, A.E and Cevik, A. (2018), "Size effect on strength of Fiber-Reinforced SelfCompacting Concrete (SCC) after exposure to high temperatures", Comput. Concete, 21(6), 681-695. https://doi.org/10.12989/cac.2018.21.6.681   DOI
13 Guo, S. (2012), "Experimental and numerical study on restrained composite slab during heating and cooling", J. Constr. Steel Res., 69(1), 95-105. https://doi.org/10.1016/j.jcsr.2011.08.009.   DOI
14 Jiang, J., Joseph, A.M., Jonathan, M.W. and Fahim, H.S. (2017), "Thermal performance of composite slabs with profiled steel decking exposed to fired effects", Fire Saf. J., 95, 24-41. https://doi.org/10.1016/j.firesaf.2017.10.003.   DOI
15 Guruprasad, Y.K. and Ramaswamy, A. (2018), "Micromechanical analysis of concrete and reinforcing steel exposed to high temperature", Constr. Build. Mater., 158, 761-773. https://doi.org/10.1016/j.conbuildmat.2017.10.061.   DOI
16 Haryanto, Y., Gan, B.S., Widyaningrum, A. and Maryoto, A. (2017), "Near surface mounted bamboo reinforcement for flexural strengthening of reinforced concrete beams", J. Tek., 79(6), 233-240.
17 Hassine, W.B., Loukil, M. and Limam, O. (2019), "A damage model predicting moderate temperature and size effects on concrete in compression", Comput. Concete, 23(5), 321-327. https://doi.org/10.12989/cac.2019.23.5.321   DOI
18 Jiang, J., Main, J.A., Sadek, F. and Weigand, J.M. (2017), "Numerical modeling and analysis of heat transfer in composite slabs with profiled steel decking", NIST Technical Note 1958, National Institute of Standards and Technology, Gaithersburg, MD.
19 Jiang, J., Main, J.A., Weigand, J.M. and Sadek, F.H. (2018), "Thermal performance of composite slabs with profiled steel decking exposed to fire effects", Fire Saf. J., 95, 25-41. https://doi.org/10.1016/j.firesaf.2017.10.003.   DOI
20 Jiangtao, Y.U., Zhaoudao, L.U. and Xiang K. (2011), "Experimental study on the performance of rc continuous members in bending after exposure to fire", Procedia Eng., 14, 821-829. https://doi.org/10.1016/j.proeng.2011.07.104.   DOI
21 Kim, S., Oli, T. and Park, C. (2020), "Effect of exposure to high temperture on the mechanical properties of SiFRCCs", Appl. Sci., 10, 1-10. https://doi.org/10.3390/app10062142.   DOI
22 Meraji, L., Afshin, H. and Abedi, K. (2019), "Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced cocnrete", Comput. Concete, 24(2), 159-172. https://doi.org/10.12989/cac.2019.24.2.159.   DOI
23 Li, G.Q., Zhang, N. and Jiang, J. (2017), "Experimental investigation on thermal and mechanical behaviour of composite floors exposed to standard fire", Fire Saf. J., 89, 63-76. https://doi.org/10.1016/j.firesaf.2017.02.009.   DOI
24 Ma, Q., Guo, R., Zhao, Z., Lin, Z. and He, K. (2015), "Mechanical properties of concrete at high temperature-A review", Constr. Build. Mater., 93, 371-383. https://doi.org/10.1016/j.conbuildmat.2015.05.131.   DOI
25 Maryoto, A. and Shimomura, T. (2017), "Effect of prestressed force and size of reinforcement on corrosion crack width in concrete member", J. Eng. Sci. Tech., 12(10), 2664-2675.
26 Mundhada, A.R. and Pofale, A.D. (2015), "Effect of high temperature on compressive strength of concrete", IOSR J. Mech. Civil Eng., 12(1), 66-70. https://doi.org/10.9790/1684-12126670.   DOI
27 Nematzadeh, M. and Nasiri, A.B. (2019), "Mechanical performance of fiber-reinforced recycled refractory brick concrete exposed to elevated temperatures", Comput. Concete, 24(1), 19-35. https://doi.org/10.12989/cac.2019.24.1.019.   DOI
28 Netinger, I., Kesegic, I. and Guljas, I. (2011), "The effect of high temperatures on the mechanical properties of concrete made with different types of aggregates", Fire Saf. J., 46(7), 425-430. https://doi.org/10.1016/j.firesaf.2011.07.002.   DOI
29 Nguyen, M.P., Nguyen, T.T. and Tan, K.H. (2018), "Temperature profile and resistance of flat decking composite slabs in- and post-fire", Fire Saf. J., 98, 109-119. https://doi.org/10.1016/j.firesaf.2018.04.001.   DOI
30 Pazdera, L., Topolar, L., Mikulasek, K., Smutny, J. and Seelmann, H. (2017), "Non-linear characteristics of temperature degraded concrete at high temperature", Procedia Eng., 190, 100-105. https://doi.org/10.1016/j.proeng.2017.05.313.   DOI
31 Priastiwi, Y.A., Han, A.L., Maryoto, A. and Noor, E.S. (2017), "Experimental study on the use of steel-decks for prefabricated reinforced concrete beams", IOP Conf. Ser. Mater. Sci. Eng., 271, 1-8. https://doi.org/10.1088/1757-899X/271/1/012095.   DOI
32 Robert, M. and Benmokrane, B. (2010), "Behavior of GFRP reinforcing bars subjected to extreme temperatures", J. Compos. Constr., 14(4), 353-360. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000092.   DOI
33 Tang, C.W. (2019), "Residual properties of high-strength fiber reinforced concrete after exposure to high temperatures", Comput. Concete, 24(1), 63-67. https://doi.org/10.12989/cac.2019.24.1.063.   DOI
34 Tao, Z., Wang, X.Q., Hassan. M.K., Song, T.Y. and Xie, L.A. (2019), "Behaviour of three types of stainless steel after exposure to elevated temperatures", J. Constr. Steel Res., 152, 296-311. https://doi.org/10.1016/j.jcsr.2018.02.020.   DOI
35 Widhianto, A., Darmayadi, D. and Asfari, G.D. (2014), "Fire resistance of normal and high-strength concrete with contains of steel fibre", Asian J. Civil Eng., 15(5), 655-669.
36 Yan, L.L., Liang, J.F. and Zhao, Y.G. (2019), "Effect of high temperature on the bond performance between steel bars and recycled aggregate concrete", Comput. Concete, 23(3), 155-160. https://doi.org/10.12989/cac.2019.23.3.155   DOI
37 Zeng, X., Jiang, S.F. and Zhou, D. (2019), "Effect of shear connector layout on the behavior of steel-concrete composite beams with interface slip", Appl. Sci., 9(207), 1-17. https://doi.org/10.3390/app9010207   DOI