• Title/Summary/Keyword: flexible structure

Search Result 1,634, Processing Time 0.028 seconds

Experiment on Maneuvering and Vibration Measurement of Flexible Two-Link Structure (두 개의 유연 링크 구조물의 조종 및 진동 계측 실험)

  • Kwak, Moon K.;Choi, Min-Seop;Yang, Dong-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.930-932
    • /
    • 2014
  • This research is concerned with the validity of a theoretical model that estimates the magnitude of vibration occurring when the flexible two-link structure is activated under control. The structure consists of flexible two-links; the sub link is attached to the end of the main link. The subject is to control flexible two-links and to measure the vibration for each flexible link structure. The result is that the vibration of the main structure affects that of the sub structure, similar to the theoretical outcome.

  • PDF

A Study of Flexible Protein Structure Alignment Using Three Dimensional Local Similarities (단백질 3차원 구조의 지역적 유사성을 이용한 Flexible 단백질 구조 정렬에 관한 연구)

  • Park, Chan-Yong;Hwang, Chi-Jung
    • The KIPS Transactions:PartB
    • /
    • v.16B no.5
    • /
    • pp.359-366
    • /
    • 2009
  • Analysis of 3-dimensional (3D) protein structure plays an important role of structural bioinformatics. The protein structure alignment is the main subjects of the structural bioinformatics and the most fundamental problem. Protein Structures are flexible and undergo structural changes as part of their function, and most existing protein structure comparison methods treat them as rigid bodies, which may lead to incorrect alignment. We present a new method that carries out the flexible structure alignment by means of finding SSPs(Similar Substructure Pairs) and flexible points of the protein. In order to find SSPs, we encode the coordinates of atoms in the backbone of protein into RDA(Relative Direction Angle) using local similarity of protein structure. We connect the SSPs with Floyd-Warshall algorithm and make compatible SSPs. We compare the two compatible SSPs and find optimal flexible point in the protein. On our well defined performance experiment, 68 benchmark data set is used and our method is better than three widely used methods (DALI, CE, FATCAT) in terms of alignment accuracy.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.130-135
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using flexible muitibody dynamic analysis and finite element one. This method is executed in 3 steps. In the la step, time dependent quantities such as dynamic loads, modal coordinates ana gross body motion of the flexible body are calculated efficiently through flexible multibody dynamic analysis. And frequency response functions are computed using Fourier transforms of those time dependent quantities. In the 2$\^$nd/ step, acoustic pressure coefficients are obtained through structure-acoustic coupling analysis by finite element analysis. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

  • PDF

Dynamic Characteristic Analysis of a Flexible Beam Actuated by Moving Coil and DC Motor (가동 코일 및 DC Motor로 작동되는 유연한 빔의 운동 특성 해석)

  • Yu, Hwajoon;Jeong, Wontaick;Nam, Yoonsu
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.15-23
    • /
    • 1999
  • Active damping system is generally used for the vibration suppression and precise motion control for the flexible structure. This application can be easily found on the space structure and driving mechanism of optical storage devices. Although a control system using the flexible structure has many advantages over using rigid mechanism in driving energy saving, system weights, and etc., more complex and precise control strategies are required. A position control system using flexible structure and the concept of active damper is designed and manufactured, which is driven by slide DC motor and moving coil motor located at the tip of the flexible beam. Dynamic characteristics of this system are investigated by analytic and experimental ways. By the comparison of those two results, a nominal reference model for this system is proposed.

  • PDF

Dual-Stiffness by Combined Structures for Rigidity-Tuning of Soft Robot (유연 소재 기반 로봇의 강성 조절을 위한 구조 결합 기반 이중 강성)

  • Choi, Jae-Hyeok;Lee, Dae-Young;Cho, Kyu-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.3
    • /
    • pp.263-269
    • /
    • 2017
  • Recently, soft robots using soft materials are presented. Thanks to soft materials, soft robots have flexible, highly-stretchable or adaptable features. However, due to the flexibility of soft material, it is hard for soft robots to control accurately or perform high force. To deal with these limitations, variable stiffness technology, which enables the stiffness control of structure, has been developed. In this research, a dual-stiffness structure that is actuated by the assembly of two flexible structures are presented. Each flexible structure consists of flexible film part and rigid parts placed at regular intervals. The flexibility of film between rigid parts allows each structure to move softly. On the other hand, by combining two structures rigid part of each part constrain the degrees of freedom of the other side part. And this causes the stiffness of whole structure to be increased. This paper will cover concepts, design, analysis and experiments of this structure.

Structure Borne Noise Analysis of a Flexible Body in Multibody System (다물체계내 유연체의 구조기인 소음해석)

  • 김효식;김창부
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

Design and control of two-link flexible manipulators (2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

TFD Device with Symmetrical Structure of Flexible Electrode Subject to Flexible Substrate

  • Lee, Chan-Jae;Hong, Sung-Jei;Kim, Won-Keun;Han, Jeong-In
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.32-35
    • /
    • 2002
  • In this work, we test electrode material of TFD (Thin Film Diode) device subject to flexible substrate. Al, that is ductile metal, was proper for flexible electrode to fabricate flexible display. The fabricated devices had symmetric electrode structure on both sides of insulation layer. The electrode was made of ductile Al so as to reduce the mismatch of properties between the electrode and substrate. The TFD device was successfully fabricated applying our own etch-free process. Electrical properties were improved by post-annealing.

Comparison of Performance of Flexible Solar Cells construction applied to Curtain Walls (커튼 월에 적용하는 플랙시블 태양전지의 모양에 따른 성능 비교)

  • Kim, Jaejin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.163-168
    • /
    • 2018
  • In this paper presents comparison of performance of flexible solar cells construction applied to curtain walls. The proposed paper compares power generation for curtain walls of various shapes using flexible PV. Through the comparison of performance, the power generation was compared by installing various types of flexible PV on the air layer of double windows. By comparing the measured power generation, it is possible to find an optimal flexible PV shape that can be applied to a curtain wall. Flexible PV installation was divided into diagonal, S and W shapes. As a result of comparison, the amount of power generation when there was no flexure of flexible PV was large. Also, as the angle with the light source increased, the power generation decreased. Therefore, it is necessary to study the structure which can fix the PV more than the flexible PV and to be able to direct the sun without distortion.

Need for Accurate Initial Conditions to Simulate Flexible Structures in Motion

  • Woo, Nelson;Ross, Brant;West, Ryan
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Flexible structures are often important components of mechanical assemblies in motion. A flexible structure sometimes must go through assembly steps that cause it to be in a pre-stressed condition when in the starting position for operation. A virtual prototype of the assembly must also bring the model of the flexible structure into the same pre-stressed condition in order to obtain accurate simulation results. This case study is presented regarding the simulation of a constant velocity joint, with a focus on the flexible boot. The case study demonstrates that careful definition of the initial conditions of the boot and flexible body contacts yields high-fidelity simulation results.