• Title/Summary/Keyword: flexible strength

Search Result 390, Processing Time 0.026 seconds

A Sunglasses Design to Prevent Snow Blindness at High Altitude (설맹 방지를 위한 고소등반용 선글라스 디자인)

  • Choi, Byung-Jin;Jang, Joon-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • Recently, the population of people exploring High Mountain trekking or expedition is increasing as an increase in the backpackers. Many accidents occurring at High Mountain above 6,000 m are the results of snow blindness. The damage of cornea and/or retina is direct cause of snow blindness. The UV intensity increases on the hand, along with the altitude caused by decrease in the atmospheric pressure, on the other hand the reflections by bright snow at high mountain area. And it increases approximately 3 times and 4 times higher than the ground level at altitude of 4,000 m and 8,000 m, respectively. The use of sunglasses is more favorable than goggles for the protection of snow blindness at High Mountains. The eye frames that have high mechanical strength and the plastic lenses which can protect UV 100% are recommended. The attachable shielding pads are needed to prevent the incident UV light reflected or scattered from the gap between glasses frame and face. The sunglasses must have flexible and long temples to wind the ears adequately for the prevention of detachment during climbing and it is recommended that the metal frame to be coated with plastics to prevent the eye surroundings from frostbite.

  • PDF

Friction Power Loss Reduction for a Marine Diesel Engine Piston (박용엔진 피스톤 스커트 프로파일 변경에 의한 마찰손실(FMEP) 저감 연구)

  • An, Sung Chan;Lee, Sang Don;Son, Jung Ho;Cho, Yong Joo
    • Tribology and Lubricants
    • /
    • v.32 no.4
    • /
    • pp.132-139
    • /
    • 2016
  • The piston of a marine diesel engine works under severe conditions, including a combustion pressure of over 180 bar, high thermal load, and high speed. Therefore, the analyses of the fatigue strength, thermal load, clamping (bolting) system and lubrication performance are important in achieving a robust piston design. Designing the surface profile and the skirt ovality carefully is important to prevent severe wear and reduce frictional loss for engine efficiency. This study performs flexible multi-body dynamic and elasto-hydrodynamic (EHD) analyses using AVL/EXCITE/PU are performed to evaluate tribological characteristics. The numerical techniques employed to perform the EHD analysis are as follows: (1) averaged Reynolds equation considering the surface roughness; (2) Greenwood_Tripp model considering the solid_to_solid contact using the statistical values of the summit roughness; and (3) flow factor considering the surface topology. This study also compares two cases of skirt shapes with minimum oil film thickness, peak oil film pressure, asperity contact pressure, wear rate using the Archard model and friction power loss (i.e., frictional loss mean effective pressure (FMEP)). Accordingly, the study compares the calculated wear pattern with the field test result of the piston operating for 12,000h to verify the quantitative integrity of the numerical analysis. The results show that the selected profile and the piston skirt ovality reduce friction power loss and peak oil film pressure by 7% and 57%, respectively. They also increase the minimum oil film thickness by 34%.

Presumption on the Failures, the Causes and the Reliability of the Mist and Dust Blower (미스트기 부품의 고장실태조사에 의한 신뢰성의 예측)

  • 금동혁;최재갑
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3702-3711
    • /
    • 1975
  • This study was originated to investigate the imparired parts of the mist and dust blowers and intended to analyze the causes of their failures by the use of the Weibull probability paper. By the use of the paper, the parts which were needed to change the design, the force of the urgency, the mean time between failures of the parts and the basic causes of the troubles could be predicted. The survey showed that the following parts got out of order: (A) flexible rubber hose, (B) blowing fan, (C) lead valve, (D) piston ring. (E) crank main bearing, (F) coil in magneto and (G) needle valve in carburettor. The analysis of the survey indicated that the parts G, C, E and D were belonged to "wear-out failure", and that the mean time between failures became shorter in order as indicated above. To insure longer lives of those parts, it would be necessary to change the design and the material and to upgrade operators mechanical technique of the mist and dust blower. The failure of the parts A, B and F was classified as "randomfailure", and they did not seem to be the "wear-out" at that time. The parts B and F was evaluated as "initial failure". Quality controls and operating tests by the producer. and the operational training for users should be strengthened so as to eliminate these failures. Were the failures only in the parts A, C, D, E, F and G, it could be said that the "reliability" of the mist and dust blower would fall to 10 percent in the second year, and 50 percent of the mist and dust blowers would fail in all parts A, C, D, E, F and G before the blower would have control insect and disease in 58.2 hectares. The use of the Weibull probability paper for analyzing failures of the mist and dust blowers was effective in that it analyzed failure in the relationship between strength of the parts and users actual circumstanoes.

  • PDF

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures (Ti (10 nm)-buffered 기판들 위에 저온에서 직접 성장된 무 전사, 대 면적, 고 품질 단층 그래핀 특성)

  • Han, Yire;Park, Byeong-Ju;Eom, Ji-Ho;Yoon, Soon-Gil
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.142-148
    • /
    • 2020
  • Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.

DESIGN OF A LOAD FOLLOWING CONTROLLER FOR APR+ NUCLEAR PLANTS

  • Lee, Sim-Won;Kim, Jae-Hwan;Na, Man-Gyun;Kim, Dong-Su;Yu, Keuk-Jong;Kim, Han-Gon
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • A load-following operation in APR+ nuclear plants is necessary to reduce the need to adjust the boric acid concentration and to efficiently control the control rods for flexible operation. In particular, a disproportion in the axial flux distribution, which is normally caused by a load-following operation in a reactor core, causes xenon oscillation because the absorption cross-section of xenon is extremely large and its effects in a reactor are delayed by the iodine precursor. A model predictive control (MPC) method was used to design an automatic load-following controller for the integrated thermal power level and axial shape index (ASI) control for APR+ nuclear plants. Some tracking controllers employ the current tracking command only. On the other hand, the MPC can achieve better tracking performance because it considers future commands in addition to the current tracking command. The basic concept of the MPC is to solve an optimization problem for generating finite future control inputs at the current time and to implement as the current control input only the first control input among the solutions of the finite time steps. At the next time step, the procedure to solve the optimization problem is then repeated. The support vector regression (SVR) model that is used widely for function approximation problems is used to predict the future outputs based on previous inputs and outputs. In addition, a genetic algorithm is employed to minimize the objective function of a MPC control algorithm with multiple constraints. The power level and ASI are controlled by regulating the control banks and part-strength control banks together with an automatic adjustment of the boric acid concentration. The 3-dimensional MASTER code, which models APR+ nuclear plants, is interfaced to the proposed controller to confirm the performance of the controlling reactor power level and ASI. Numerical simulations showed that the proposed controller exhibits very fast tracking responses.

Poly(1,2-propylene glycol adipate) as an Environmentally Friendly Plasticizer for Poly(vinyl chloride) (폴리염화비닐의 친환경 가소제로서 Poly(1,2-propylene glycol adipate))

  • Zhao, Yan;Liang, Hongyu;Wu, Dandan;Bian, Junjia;Hao, Yanping;Zhang, Guibao;Liu, Sanrong;Zhang, Huiliang;Dong, Lisong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.247-255
    • /
    • 2015
  • Poly(1,2-propylene glycol adipate) (PPA) was used as an environmentally friendly plasticizer in flexible poly(vinyl chloride) (PVC). Thermal, mechanical, and rheological properties of the PVC/PPA blends were characterized by differential scanning calorimetry, dynamic mechanical analysis, tensile test, scanning electron microscopy and small amplitude oscillatory shear rheometry. The results showed that PPA lowered the glass transition temperature of PVC. The introduction of PPA could decrease tensile strength and Young's modulus of the PVC/PPA blends; however, elongation-at-break was dramatically increased due to the plastic deformation. The plasticization effect of PPA was also manifested by the decrease of dynamic storage modulus and viscosity in the melt state of the blends. The results indicated that PPA had a good plasticizing effect on PVC.

Polymer/Inorganic Nanohybrid Membrane on Lithium Metal Electrode: Effective Control of Surficial Growth of Lithium Layer and Its Improved Electrochemical Performance (리튬 금속 전극상 고분자/무기물 나노복합막 형성: 리튬층의 효과적 표면성장 제어 및 전기화학적 특성 향상)

  • Jeong, Yohan;Seok, Dohyeong;Lee, Sanghyun;Shin, Weon Ho;Sohn, Hiesang
    • Membrane Journal
    • /
    • v.30 no.1
    • /
    • pp.30-37
    • /
    • 2020
  • Polymer/inorganic composites were used as a protective layer of lihitum metal electrode for effective suppression of lithium dendrite. PVDF-HFP was used as an polymer material and TiO2 nanoparticle was used as an inorganic material. PVDF-HFP is a highly flexible polymer that acts as a matrix of inorganic materials while TiO2 nanoparticle improves the mechanical strength and ion conductivity of the protective layer. The as-synthesized protective hybrid membrane exhibited good dispersion of TiO2 in the PVDF-HFP matrix by SEM, AFM and XRD analyses. Furthermore, the electrochemical analysis showed that the polymer-inorganic composite retained high coulombic efficiency of 80% and low overpotential, less than 20 mV until the 100th cycles due to the improved mechanical properties and ion conductivity in comparison to the control sample (untreated and PVDF-HFP polymers/Cu).

Design and performance evaluation of a storage cloud service model over KREONET (KREONET 기반의 스토리지 클라우드 서비스 모델 설계 및 성능평가)

  • Hong, Wontaek;Chung, Jinwook
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.7
    • /
    • pp.29-37
    • /
    • 2017
  • Compared to the commercial networks, R&E networks have the strength such as flexible network engineering and design. Based on those features of R&E networks, we propose our storage cloud service model which supports general-purpose network users in a central region and experimental network users in distributed regions simultaneously. We prototype our service model utilizing multiple proxy controllers of OpenStack Swift service in order to deploy several regions via experimental backbone networks. Our experiments on the influence of the network latency and the size of data to be transmitted show that the bigger size of data is preferable to the smaller size of data in an experimental backbone network where the network latency increases within 10ms because the rate of throughput decline in the bigger object is comparatively small. It means that our service model is appropriate for experimental network users who directly access the service in order to move intermittently high volume of data as well as normal users in the central region who access the service frequently.

Analytical and experimental research on wind-induced vibration in high-rise buildings with tuned liquid column dampers

  • Liu, Ming-Yi;Chiang, Wei-Ling;Chu, Chia-Ren;Lin, Shih-Sheng
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-90
    • /
    • 2003
  • In recent years, high-strength, light-weight materials have been widely used in the construction of high-rise buildings. Such structures generally have flexible, low-damping characteristics. Consequently, wind-induced oscillation greatly affects the structural safety and the comfort of the building's occupants. In this research, wind tunnel experiments were carried out to study the wind-induced vibration of a building with a tuned liquid column damper (TLCD). Then, a model for predicting the aerodynamic response in the across-wind direction was generated. Finally, a computing procedure was developed for the analytical modeling of the structural oscillation in a building with a TLCD under the wind load. The model agrees substantially with the experimental results. Therefore, it may be used to accurately calculate the structural response. Results from this investigation show that the TLCD is more advantageous for reducing the across-wind vibration than the along-wind oscillation. When the across-wind aerodynamic effects are considered, the TLCD more effectively controls the aerodynamic response. Moreover, it is also more useful in suppressing the acceleration than the displacement in biaxial directions. As s result, TLCDs are effective devices for reducing the wind-induced vibration in buildings. Parametric studies have also been conducted to evaluate the effectiveness of the TLCD in suppressing the structural oscillation. This study may help engineers to more correctly predict the aerodynamic response of high-rise buildings as well as select the most appropriate TLCDs for reducing the structural vibration under the wind load. It may also improve the understanding of wind-structure interactions and wind resistant designs for high-rise buildings.