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Abstract Compared to the commercial networks, R&E networks have the strength such as flexible
network engineering and design. Based on those features of R&E networks, we propose our storage cloud
service model which supports general-purpose network users in a central region and experimental network
users in distributed regions simultaneously. We prototype our service model utilizing multiple proxy
controllers of OpenStack Swift service in order to deploy several regions via experimental backbone
networks. Our experiments on the influence of the network latency and the size of data to be transmitted
show that the bigger size of data is preferable to the smaller size of data in an experimental backbone
network where the network latency increases within 10ms because the rate of throughput decline in the
bigger object is comparatively small. It means that our service model is appropriate for experimental
network users who directly access the service in order to move intermittently high volume of data as well
as normal users in the central region who access the service frequently.
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요 약 연구망은상용망과비교하여유연한네트워크엔지니어링및설계등의강점을갖는다. 본 논문은이러한
연구망의 특성에기반하여 일반망 사용자들과분산된 지역의첨단 망 사용자들을 동시에지원하는 스토리지클라
우드 서비스 모델을 제안한다. 첨단 백본 망에 연결된 다수 지역을 적용하기 위해 오픈스택 Swift 서비스의 복수
프락시 컨트롤러를 활용하여 제안 서비스 모델을 프로토타이핑 한다. 망 지연 및 전송 데이터 크기의 영향과 관련
한 실험에서 10ms 범위 내의 망지연이발생하는첨단 백본망에서는데이터크기가 상대적으로큰데이터가작은
데이터보다 선호되는 것을 볼 수 있었고, 이것은 큰 데이터에서의 처리 감소율이 작은 데이터에 비해 상대적으로
작은 것에 기인한다. 이러한 실험 결과는 제안 모델이 중앙 지역에서 서비스의 접근 빈도가 잦은 일반 사용자들뿐
만 아니라 간헐적으로 대용량 데이터를 전송하기 위해 서비스에 접근하는 첨단 망 사용자들에게도 적합하다는 것
을 보여준다.
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1. Introduction
Cloud computing, which has been recently paid

attention to in ICT filed provides resources for users

based on the “Pay as you go” concept by utilizing

virtualization technique. As a result, it makes to reduce

cost and time required for the construction of IT

infrastructure. This concept of cloud computing has

also been applied to advanced science application filed

that requires high performance computing, storage and

network resource together. It has helped to improve

research environment for application scientists[1,2]. In

reality, it makes experiments in advanced science

application field such as LHC(Large Hadron Collider)

and STAR(Solenoidal Tracker at RHIC) possible

through “On-Demand Science” similar to “Pay as you

go” concept, which were impossible to be performed

because of limited resource capacity and difficulty of

building a collaborative research environment[3,4] In

particular, the sharing and transmission of high volume

of data through the support of network resources in a

collaborative research environment is considered as

very important research area in order to provide cloud

storage resources efficiently in research network

communities[5]. It enables collaborative researches of

advanced science application communities by procuring

their own cloud storage. Consequently, application

science users are able to reduce time and cost needed

for building individual data storage and solve the

problem of securing skilled operators who deal with

their own IT infrastructure.

In accordance with these kinds of research network

trends, there have been practical approaches to support

a collaborative research environment for advanced

science application utilizing cloud services in

KREONET(Korea Research Environment Open

NETwork), one of Korean research networks.

According to the service types and properties, these

services are able to be categorized into ICT Software

tools and virtualized resource infrastructure services in

the view of SaaS(Software as a service) and IaaS

(Infrastructure as a service) concept[6]. Especially, as

there have been frequent collaborations based on high

volume of data between research communities, the

research issues concerned with network performance

have been considered as important factors to support

more stable storage cloud service[7,8]. In that sense,

our research is also focused on network issues for

storage cloud service in research network domains. We

analyze the requirements for data sharing and

transmission service model over KREONET. Based on

those analyses, we propose an appropriate service

model in order to support general-purpose network

users in a central region and experimental network

users in distributed regions simultaneously. After that,

we describe the design of our storage cloud service

utilizing OpenStack Swift component. In addition, we

build the experimental testbed and validate our model

through various experimental scenarios. Finally, we

discuss the result of experiments performed.

The rest of the paper is organized as follows. In

Section 2, we describe the related work including cloud

services in research network communities. Section 3

presents our service model designed for the

requirements for a storage cloud service over

KREONET. Section 4 shows the organization of

experimental testbed and scenarios. In Section 5, we

analyze and discuss the result of experiments. We

conclude in Section 6.

2. Related work
The international research network communities

have recently studied network technologies and

structures in order to solve the problems concerned

when providing cloud services based on their own

networks.

OpenCloud project in Internet2 of U.S. aims at

providing“Value-Added” cloud services over the

research and education network with the collaboration

of Internet2 and membership institutes[9]. Especially,

XOS which is a new cloud operating system has been

studied on the basis of resource virtualization and
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SDN(Software Defined Networking). It defines its

service management toolkit which simplifies the

process of creation, operation, management and

composition of services.

GEANT, the research and education network of EU

proposes the gOCX(GEANT Open Cloud eXchange)

concept [10] and intends to provide necessary network

frameworks and functions for support of high quality

cloud services between cloud service providers and

research network users.

S. Yokoyama and N. Yoshioka [11] point out the

weakness of collaboration framework through the

federation of multiple clouds in the previous cloud

service standardization and studies. They propose the

on-demand cloud architecture for cloud collaboration

over a community cloud environment which has been

studied in NII and SINET, Japan. In this proposal,

multiple private clouds are able to be federated

horizontally and the utilization rate of cloud resources

is maximized by sharing their resource.

Magellan project[12] analyzes the unique

requirements of science applications through the

DOE(the Department of Energy) ASCR(Advanced

Scientific Computing Research) program in US and

lists the expected problems when clouds are applied to

scientific applications. Especially, the limitations of

cloud soft ware such as Eucalyptus, OpenStack and

Hadoop are discussed in detail. The experiences in

operating a cloud testbed are also provided and the

gaps between resource providers and science

applications are discussed additionally.

On the other hand, there has been an effort to

indicate a limit to the internal network performance of

public cloud and to improve overall performance of

science applications through network performance

testing[13]. Namely, they propose network health

parameters and metrics for network connection

between cloud instances and apply their proposed

model to pCT(proton computed tomography), a medical

imaging modality application of e-Science. Finally, they

validate their model through a performance evaluation.

A. Melekhova and V. Vinnikov[14,15] survey the

generalized grid models, cloud models and grid- cloud

integration paradigm. The study reveals that the

virtualization is considered as one of key factors to

achieve converged model. Based on the detailed study,

the up-to-date efficient management techniques of

virtual resources are also provided. Additionally, the

algorithmic ideas on memory workload estimation are

proposed for nested virtual machines.

N. Nagar and U. Suman[16] propose comparative

parameters which are considered when clouds are

applied utilizing cloud software such as Eucalyptus,

OpenNebula, Nimbus and OpenStack. They provide

guidelines for choosing a proper cloud technology

according to the application requirements by

comparative study based on selected comparative

parameters.

3. Proposed service model and use 
cases

Before we propose our service model, this section

describes the requirements for a storage service over

R&E network. According to our survey including

review of related works in section 2, there are two

important requirements. First, it should be highly

available, distributed and scalable service. Besides,

customizable cloud software is required because we

need to consider various user requirements from

diverse advanced science user communities. Second,

we have to consider R&E network features. Compared

to storage cloud services in normal networks, services

in R&E networks can distinguishingly utilize the

strength of R&E networks such as flexible network

engineering and design. Actually, domestic networks in

KREONET are composed of a general-purpose

network for normal users and an experimental

backbone network for advanced application scientists.

Regarding general-purpose network users, there is a

pattern to frequently access the service in a central

region. Compared to them, experimental network users
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in other regions access the service remotely

anticipating high performance networking.

[Fig. 1] Conceptual service model

Figure 1 shows a conceptual service model that

reflects the requirements mentioned above. As for the

first requirement, it should provide the data control

service for a storage cloud including the functionalities

such as storing, synchronizing and duplicating of data.

OpenStack Swift service can be utilized in order to

meet all of these needs. Open source cloud OS,

OpenStack software [17] controls pools of compute,

storage and networking resources. Major services of

OpenStack are Nova computing service and Swift

storage service. In particular, Swift service is highly

available and scalable storage service for large file

sharing and transmission. It also provides metadata

which is information about the object and deals with

user authentication based on Keystone service.

Regarding the second requirement, we support load

balancing mechanism in a central region for

general-purpose network users. Additionally, we

deploy multiple proxy servers of swift service in other

regions. It enables high performance guaranteed

storage service due to friction-free backbone network.

Based on our solutions to main requirements, figure

2 shows the organization of our proposed system which

is composed of four main parts. As for backend storage

nodes, they keeps at least three replicas for high

availability. As more storage capacity is required,

additional storage nodes or disks in each node will be

easily added and expanded. A proxy server provides a

public interface of Swift service. It contacts to a

Keystone server to deal with authentication process

before entering a Swift service. Each region operates

its own proxy server independently and it is registered

in the Keystone server that is located in the central

region where all storage nodes are deployed. In that

case, users of the Swift service in that region do not

need to access a load balancer or proxy servers in the

central region. The reason why it is possible is that

storage and replication networks extended to each

region are friction-free and single-hop networks. All

storage nodes in figure 2 are located in a single domain

and several proxy servers work together with them. On

that point, a load balancer that coordinates multiple

proxy servers is necessary. In most of the use cases,

clients will use one of several proxy servers via a load

balancer. Therefore, it is configured to distribute

requests from clients according to its own load

balancing policy such as round-robin, static-rr and

least-connection.

[Fig. 2] Proposed service deployment

Figure 3 shows captured image performed by

OpenStack Swift CLI in order to explain the use cases

of our proposed system. There is multiple endpoints list

of a Keystone service in the central site in figure 2.

Two endpoint entries have the same service id and

they belong to different regions respectively. In detail,

first entry represents a service id of a load balancer in

the central site and the other one is a service id of a

proxy server in a remote site. Regarding the first
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scenario for normal users in the view of service users,

they contact a load balancer via a Keystone server in

the central site. According to the policy of load

balancer, the requests are transmitted to one of proxy

servers which were already registered in the Keystone

server. After that, that proxy server does

CRUD(Create, Read, Update and Delete) actions

through backend storage nodes and returns the result.

On the other hand, regarding the second scenario for

scientific application users in other regions, they access

a Swift service via an experimental backbone network

and contact a proxy server which is located in their

region. They do not suffer from the last one mile

problem if only they are able to directly access their

nearby regional networks. Even if backend storage

nodes are not located in their region, their requests are

transmitted within a very short time. In reality, the

RTT(Round-Trip Time) between Seoul and Daejeon is

less than 3ms.

[Fig. 3] Multiple swift service endpoints

4. Experiments
In this section, we perform two kinds of experiments

in order to verify our proposal. First, according to the

location of a client and whether or not a load balancer

exists, we estimate the performance of our proposed

system. Second, we examine the performance

degradation in accordance with the network latency

between a proxy server and storage nodes. The second

experiment is related to simulate the situation that the

network delay might happen when a proxy server is

connected to storage nodes via an experimental

backbone network.

With regard to building the experimental testbed, we

use OpenStack Juno version which was released

October 2014.Different from other sub projects in

OpenStack, Swift service is relatively independent of

others. In order to authenticate Swift users, Keystone

component is usually used together with a Swift

service. A proxy server connects between swift service

and clients. When uploading and downloading object

files, it identifies which drives belong to which Swift

partition. As fora storage node server, it keeps account,

container and object ring files which relates to

information that will be stored for accounts, containers

and objects. All object servers which create 1024

partitions have 12 Intel Xeon E5-2620 cores running at

2.40GHz, 96GB of main memory and two 6TB disk

drives for three replicas. HAProxy[18] is used to

support load balancing function for multiple

connections. It is a popular open source program which

distributes TCP/HTTP workload among several

servers. Swift-bench[19] plays a role in a bench

marking tool for swift cluster. It generates workload of

PUT, GET and DEL operations and estimates the

number of average requests per second per operation.

It also provides various configuration parameters such

as total client concurrency, the size of objects, the

number of objects and the number of GETs that we

can create different experimental scenarios.

[Fig. 4] Experiment-I testbed topology

(Experiment-I) Figure 4 shows the testbed topology

for the first experiment. There are several experimental

scenarios depending on the location of a client, namely

a swift-bench process and whether or not a load
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balancer is.

In more detail, we can categorize the experimental

cases as shown in table 1.In this experiment, we

assume that a keystone server exists with a proxy

server machine and there are all OpenStack

components including a load balancer are deployed in

the same network. Additionally, a client is located in a

proxy server, in the same network with a proxy server

or in the different network with a proxy server.

According to the combination of them, we can get five

different experimental cases. As for each case, we

generate workload of PUT/GET/DEL operations while

changing the object size from 10 bytes to 100Mbytes.

The requests from the process of swift-bench are

generally handled as follows: First, when the request is

executed, a keystone server authenticates that request.

After that, a load balancer accepts it and it is

continuously sent to one of proxy servers. The selected

proxy server propagates operation commands to three

storage nodes and returns the result in reverse.

<Table 1> Categorization of experimental cases
Client in a
proxy server

Client in the
same network
with a proxy
server

Client in the
different

network with a
proxy server

No LB exists (I) (II) (IV)

LB exists n/a (III) (V)

(Experiment-II)Figure 5 shows the testbed topology

for the second experiment. Compared to the first

experiment, the second one is performed in a relatively

simple way. This experiment simulates the decrease in

performance in proportion to network latency between

a proxy server and storage nodes over an experimental

backbone network. We need to do these kinds of

experiments in a similar environment before real

deployment. The important parameters to give

influence to the performance of swift cluster if deployed

over the experimental backbone network are network

latency and the data size of object files to be moved.

We utilize swift-bench and TC tool in order to make

the simulation environment. In a real deployment, the

network delay occurs in the connection between a

proxy controller and storage nodes because that

connection is created in a long distance network. As

though it is quite long distance between two regions

over KREONET, the RTT between them has been

known as within 10 milliseconds. TC tool [20] makes

network delay artificially and adds rules to netem

which is a kernel component for simulating the

properties of WAN(Wide Area Network). In our

experiment, it is used to simulate the network delay

between two regions which will be deployed in

experiment al back bone networks. Similar to the first

experiment, swift-bench is used to generate

PUT/GET/DEL operations over the test be das shown

in figure5. Different from the first experiment, we fix

the location of swift-bench as where the proxy server

is. We can get various experimental results depending

on the combination of the object size and network

latency.

[Fig. 5] Experiment-II testbed topology

5. Analysis and discussion
In this section, we present the results of experiments

mentioned in a previous section and discuss the

meaning of them.

(Experiment-I) We performed several kinds of

experiments to verify the influence of the location of a

swift client and whether or not a load balancer is.

Because a swift-bench program is selected as a client

tool, we can get the result of PUT/GET/DEL

operations sequentially. Based on the categorization in
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a table 1, each experimental case is repeatedly executed

with the different size of objects from 10bytes to about

100Mbytes. The other parameters which are used in a

swift-bench are as follows: The number of objects is

100 and the number of GETs is200.

Overall, the performance of all cases is almost

identical as shown in from figure 6 to figure 8 as for

PUT/GET/DEL operations. If observed more closely,

we can see better performance of Case (I)than other

cases regarding GET/DEL operations. Intuitively, it is

able to be explained by the fact that the client request

is created in the nearby location from a proxy server

and storage nodes, namely in same network boundary.

As for the performance degradation of PUT/GET

operation in the sixth stage (1Mbytes), it means that

the performance of our testbed decreases sharply from

about 1Mbytes, the data size of object. On the other

hand, regarding DEL operations, there is no influence

from the data size of object in all cases.

In PUT operations, the best performance occurs in

the fourth and fifth stages (10Kbytes and 100Kbytes).

It means that the proper data size which is not too

small is rather helpful to improve the throughput of a

swift cluster system because the performance is

directly related to the frequency of the generation of

requests to proxy servers or load balancers.

In short, several experimental cases based on where

a swift client is located and whether or not a load

balancer is show that a load balancer for the

distribution of workload is not critical to the

performance of our swift cluster testbed and the

location of a swift client such as a swift-bench

program could have an effect on the throughput of

GET/DEL operations.

[Fig. 6] Throughput of PUT operation in Experiment-I

[Fig. 7] Throughput of GET operation in Experiment-I

[Fig. 8] Throughput of DEL operation in Experiment-I

(Experiment-II) In this subsection, we analyze the

result of experiment-II. In order to investigate on the

influence of network latency and the data size of object

files, each experimental case is repeatedly performed

with the different network latency per the different size

of objects from 100Kbytes to 100Mbytes. The other

parameters which are used in a swift-bench are as

follows: The number of objects is 100. The number of

GETs is 200.

Figure 9,10 and 11 show the throughput of

PUT/GET/DEL operations in the different data size of

objects while swift-bench is executed with the

different network delay values from 0ms to 50ms. As

the network latency increases, the throughput of all

operations decreases as expected. As for PUT/GET

operations, the rate of throughput decline in the first

and second cases (100Kbytes and 1Mbytes) is bigger

than that in the third and fourth cases (10Mbytes and

100Mbytes).It means that as the network delay in the

smaller size of object files increases, the throughput of

swift cluster system has more influence than in the

bigger size of object files. Based on that observation,

we can find out that the bigger size of object data is

preferable to the smaller size of object data in an

experimental backbone network where the network

latency increases. As for the fourth case (100Mbytes),



한국융합학회논문지 제8권 제7호36

we could not get the meaningful throughput of

operations from more than 15ms network latency

because the swift-bench was not executed well in that

condition. On the other hand, the ratio of throughput

decrease of DEL operation is smaller than that of

PUT/GET operations in the size of all objects. It means

that DEL operation is less sensitive to network latency

than PUT/GET operations. It can be inferred that the

DEL operation require less traffic volume than

PUT/GET operations without regard to the object size.

[Fig. 9] Throughput of PUT operation in Experiment-II

[Fig. 10] Throughput of GET operation in Experiment-II

[Fig. 11] Throughput of DEL operation in Experiment-II

6. Conclusion
As the collaboration between research communities

utilizing high volume of data is frequent, to support

storage cloud service has been a very important role in

R&E networks. In this paper, we propose our storage

cloud service model based on the requirements for a

storage service over R&E network. Compared to

storage cloud services in normal networks, services in

R&E networks can distinguishingly utilize the strength

of R&E networks such as flexible network engineering

and design. Utilizing those features of R&E networks,

it is designed to support general-purpose network

users in a central region and experimental network

users in distributed regions simultaneously. It is based

on load balancing mechanism and multiple proxy

servers of OpenStack Swift service that enables highly

available, distributed and scalable service.

We have built the experimental testbed for our

service model and evaluated it with several

experimental scenarios. Our evaluation has shown that

the location of a swift client and whether or not there

is a load balancer is not critical factor to the

performance for our storage service. In addition, our

experiments on the influence of network latency and

the size of data to be transmitted show that the bigger

size of object data is preferable to the smaller size of

object data in an experimental backbone network where

the network latency increases because the rate of

throughput decline in the bigger object is comparatively

small. It means that our service model is appropriate

for experimental network users who directly access the

service via their remote backbone network in order to

move intermittently high volume of data as well as

normal users in the central regionwho access the

service frequently.
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