Browse > Article
http://dx.doi.org/10.3740/MRSK.2020.30.3.142

Transfer-Free, Large-Scale, High-Quality Monolayer Graphene Grown Directly onto the Ti (10 nm)-buffered Substrates at Low Temperatures  

Han, Yire (Department of Materials Science and Engineering, Chungnam National University)
Park, Byeong-Ju (Department of Materials Science and Engineering, Chungnam National University)
Eom, Ji-Ho (Department of Materials Science and Engineering, Chungnam National University)
Yoon, Soon-Gil (Department of Materials Science and Engineering, Chungnam National University)
Publication Information
Korean Journal of Materials Research / v.30, no.3, 2020 , pp. 142-148 More about this Journal
Abstract
Graphene has attracted the interest of many researchers due to various its advantages such as high mobility, high transparency, and strong mechanical strength. However, large-area graphene is grown at high temperatures of about 1,000 ℃ and must be transferred to various substrates for various applications. As a result, transferred graphene shows many defects such as wrinkles/ripples and cracks that happen during the transfer process. In this study, we address transfer-free, large-scale, and high-quality monolayer graphene. Monolayer graphene was grown at low temperatures on Ti (10nm)-buffered Si (001) and PET substrates via plasma-assisted thermal chemical vapor deposition (PATCVD). The graphene area is small at low mTorr range of operating pressure, while 4 × 4 ㎠ scale graphene is grown at high working pressures from 1.5 to 1.8 Torr. Four-inch wafer scale graphene growth is achieved at growth conditions of 1.8 Torr working pressure and 150 ℃ growth temperature. The monolayer graphene that is grown directly on the Ti-buffer layer reveals a transparency of 97.4 % at a wavelength of 550 nm, a carrier mobility of about 7,000 ㎠/V×s, and a sheet resistance of 98 W/□. Transfer-free, large-scale, high-quality monolayer graphene can be applied to flexible and stretchable electronic devices.
Keywords
graphene; transfer free; Ti buffer layer; low temperature growth; large-scale growth;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, Nano Lett., 9, 30 (2009).   DOI
2 X. Li, C. W. Magnuson, A. Venugopal, R. M. Tromp, J. B. Hannon, E. M. Vogel, L. Colombo and R. S. Ruoff, J. Am. Chem. Soc., 133, 2861 (2011).
3 J. An, E. Voelkl, J. W. Suk, X. Li, C. W. Magnuson, L. Fu, P. Tiemeijer, M. Bischoff, B. Freitag, E. Popova and R. S. Ruoff, ACS Nano, 5, 2433 (2011).   DOI
4 J-H. Lee, E. K. Lee, W.-J. Joo, Y. Jang, B.-S. Kim, J. Y. Lim, S.-H. Choi, S. J. Ahn, J. R. Ahn, M.-H. Park, C.-W. Yang, B. L. Choi, S.-W. Hwang and D. Whang, Science, 344, 286 (2014).   DOI
5 B.-J. Park, J.-S. Choi, J.-H. Eom, H. Ha, H. Y. Kim, S. Lee, H. Shin and S.-G. Yoon, ACS Nano, 12, 2008 (2018).   DOI
6 Y. Lee, S. Bae, H. Jang, S.-J. Jang, S.-E. Zhu, S.-H. Sim, Y.-I. Song, B.-H. Hong and J.-H. Ahn, Nano Lett., 10, 490 (2010).   DOI
7 X. Li, W. Cai, J.-H. An, S.-Y. Kim, J.-Y. Nah, D.-X. Yang, R. Piner, A. Velamakanni, I.-H. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, Science, 324, 1312 (2009).   DOI
8 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg. J. Hone, P. Kim and H. L. Stomer, Solid State Commun., 146, 351 (2008).   DOI
9 S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak and A. K. Geim, Phys. Rev. Lett., 100, 016602 (2008).   DOI
10 A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahan, F. Miao and C. N. Lau, Nano Lett., 8, 902 (2008).   DOI
11 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI
12 S. Bae, S. J. Kim, D. Shin, J. -H. Ahn and B. H. Hong, Phys. Scr., T, 146, 014024 (2012).
13 A. K. Geim and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
14 M. H.-C. Jin, M. Durstock and L. Dai, Carbon Nano Technol., 4, 611 (2006).
15 C. Lee, X. Wei, J. W. Kysar and J. Hone, Science, 321, 385 (2008).   DOI
16 J. S. Bunch, S. S. Verbridge, J. S. Alden, A. M. V. D. Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, Nano Lett., 8, 4320 (2008).   DOI