• Title/Summary/Keyword: flexible printed electronics

Search Result 86, Processing Time 0.032 seconds

Analysis of embedded capacitor using Flexible PCB (Flexible PCB를 이용한 내장형 캐패시터의 분석)

  • Yoo, Joshua;Kim, J.W.;Yoo, M.J.;Park, S.D.;Lee, W.S.;Lee, H.G.;Kang, N.K.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.150-152
    • /
    • 2004
  • The number of layers in rigid PCB(printed circuit board) is restricted, so the number of components can be embedded in module is restricted also. But using flexible multilayer PCB, the layers over than 7 can be evaluated. In this study, to verify the possibility of application of flexible multilayer PCB to RF modules, multilayered embedded capacitor is fabricated and analyzed. The characteristics of embedded capacitor is analyzed and compared to that of MLCC and LTCC capacitor. Embedded capacitor has better electrical features than MLCC and compatible one to LTCC capacitor.

  • PDF

Wearable Human Health-monitoring Band using Inkjet-printed Flexible Temperature Sensor

  • Han, Dong Cheul;Shin, Han Jae;Yeom, Se Hyeok;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.301-305
    • /
    • 2017
  • This paper presents a wearable human health-monitoring band. The band consists of a body temperature detector (BTD) and a hear rate detector (HRD). The BTD and HRD are realized using an inkjet-printed flexible temperature sensor and a commercial heart rate sensor module, respectively. The sensitivity of the fabricated BTD was found to be $-31/^{\circ}C$ with a linearity of 99.82%. The HRD using the commercial heart rate sensor module has a good performance with a standard deviation of 0.85 between the data of a commercial smart watch and the fabricated HRD.

Research Status on Flexible Electronics Fabrication by Metal Nano-particle Printing Processes (금속 나노입자 프린팅 공정을 이용한 유연전기소자 연구 현황)

  • Ko, Seung Hwan
    • Particle and aerosol research
    • /
    • v.6 no.3
    • /
    • pp.131-138
    • /
    • 2010
  • Flexible electronics are the electronics on flexible substrates such as a plastic, fabric or paper, so that they can be folded or attached on any curved surfaces. They are currently recognized as one of the most innovating future technologies especially in the area of portable electronics. The conventional vacuum deposition and photolithographic patterning methods are well developed for inorganic microelectronics. However, flexible polymer substrates are generally chemically incompatible with resists, etchants and developers and high temperature processes used in conventional integrated circuit processing. Additionally, conventional processes are time consuming, very expensive and not environmentally friendly. Therefore, there are strong needs for new materials and a novel processing scheme to realize flexible electronics. This paper introduces current research trends for flexible electronics based on (a) nanoparticles, and (b) novel processing schemes: nanomaterial based direct patterning methods to remove any conventional vacuum deposition and photolithography processes. Among the several unique nanomaterial characteristics, dramatic melting temperature depression (Tm, 3nm particle~$150^{\circ}C$) and strong light absorption can be exploited to reduce the processing temperature and to enhance the resolution. This opens a possibility of developing a cost effective, low temperature, high resolution and environmentally friendly approach in the high performance flexible electronics fabrication area.

Sol-Gel Processed InGaZnO Oxide Semiconductor Thin-Film Transistors for Printed Active-Matrix Displays

  • Kim, Yong-Hoon;Park, Sung-Kyu;Oh, Min-Suk;Kim, Kwang-Ho;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1002-1004
    • /
    • 2009
  • Solution-processed indium-gallium-zinc-oxide thin-film transistors were fabricated by sol-gel method. By a combinatorial study of InGaZnO multi-component system, optimum molar ratio of In, Ga, and Zn has been selected. By adjusting the In:Ga:Zn molar ratio, TFTs with field-effect mobility of 0.5 ~ 1.5 $cm^2$/V-s, threshold voltage of -5 ~ 5 V, and subthreshold slope of 1.5 ~ 2.5 V/decade were achieved.

  • PDF

인쇄전자를 위한 롤투롤 프린팅 공정 장비 기술

  • Kim, Dong-Su;Kim, Chung-Hwan;Kim, Myeong-Seop
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.15.2-15.2
    • /
    • 2009
  • Manufacturing of printed electronics using printing technology has begun to get into the hot issue in many ways due to the low cost effectiveness to existing semi-conductor process. This technology with both low cost and high productivity, can be applied in the production of organic thin film transistor (OTFT), solar cell, radio frequency identification (RFID) tag, printed battery, E-paper, touch screen panel, black matrix for liquid crystal display (LCD), flexible display, and so forth. The emerging technology to manufacture the products in mass production is roll-to-roll printing technology which is a manufacturing method by printings of multi-layered patterns composed of semi-conductive, dielectric and conductive layers. In contrary to the conventional printing machines in which printing precision is about $50~100{\mu}m$, the printing machines for printed electronics should have a precision under $30{\mu}m$. In general, in order to implement printed electronics, narrow width and gap printing, register of multi-layer printing by several printing units, and printing accuracy of under $30{\mu}m$ are all required. We developed the roll-to-roll printing equipment used for printed electronics, which is composed of un-winder, re-winder, tension measurement system, feeding units, dancer systems, guide unit, printing unit, vision system, dryer units, and various auxiliary devices. The equipment is designed based on cantilever type in which all rollers except printing ones have cantilever types, which could give more accurate machine precision as well as convenience for changing rollers and observing the process.

  • PDF

Fabrication of Flexible Temperature & Humidity Sensor Using Inkjet-printing Technology (잉크젯 프린팅 기술을 이용한 플렉서블 온·습도센서 개발)

  • Kye, Ji Won;Han, Dong Cheul;Shin, Han Jae;Kim, HeonGon;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.119-123
    • /
    • 2015
  • This paper presents the inkjet-printed flexible temperature and humidity sensor(F-TH sensor) using PEDOT:PSS. The series, mesh and parallel type sensing element using PEDOT:PSS ink was printed on the overhead projector(OHP) film. The fabricated sensor of each structure has the temperature sensitivity of $140{\Omega}/^{\circ}C$, $29{\Omega}/^{\circ}C$ and $1.4{\Omega}/^{\circ}C$ with linearity, respectively. Also the fabricated sensor was not only possible to measure a temperature, but also to detect humidity. The humidity sensitivity of $400{\Omega}/%RH$, $3.4{\Omega}/%RH$ and $3{\Omega}/%RH$ with linearity, respectively. The fabricated F-TH sensor is expected for the various applications such as electronic devices, bio-healthcare, industrial field.

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process (O2 플라즈마 표면 처리 공정 후 라미네이션 공정으로 제작된 흑연 페이스트 기반의 저비용 및 고감도 유연 압력 센서)

  • Nam, Hyun Jin;Kang, Cheol;Lee, Seung-Woo;Kim, Sun Woo;Park, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.4
    • /
    • pp.21-27
    • /
    • 2022
  • Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.

Development of Three-Dimensional Deformable Flexible Printed Circuit Boards Using Ag Flake-Based Conductors and Thermoplastic Polyamide Substrates

  • Aram Lee;Minji Kang;Do Young Kim;Hee Yoon Jang;Ji-Won Park;Tae-Wook Kim;Jae-Min Hong;Seoung-Ki Lee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.420-426
    • /
    • 2024
  • This study proposes an innovative methodology for developing flexible printed circuit boards (FPCBs) capable of conforming to three-dimensional shapes, meeting the increasing demand for electronic circuits in diverse and complex product designs. By integrating a traditional flat plate-based fabrication process with a subsequent three-dimensional thermal deformation technique, we have successfully demonstrated an FPCB that maintains stable electrical characteristics despite significant shape deformations. Using a modified polyimide substrate along with Ag flake-based conductive ink, we identified optimized process variables that enable substrate thermal deformation at lower temperatures (~130℃) and enhance the stretchability of the conductive ink (ε ~30%). The application of this novel FPCB in a prototype 3D-shaped sensor device, incorporating photosensors and temperature sensors, illustrates its potential for creating multifunctional, shape-adaptable electronic devices. The sensor can detect external light sources and measure ambient temperature, demonstrating stable operation even after transitioning from a planar to a three-dimensional configuration. This research lays the foundation for next-generation FPCBs that can be seamlessly integrated into various products, ushering in a new era of electronic device design and functionality.

Common Mode Filter Embedded in Flexible Printed Circuit Board for Multi-Function Cable (다기능 케이블을 위한 연성 회로 기판에 내장된 공통 모드 필터)

  • Byun, Jin-Do;Jung, Sang-Woon;Lee, Keun-Hyung;Lee, Hai-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.343-351
    • /
    • 2008
  • In this paper, a spiral shaped common mode filter(CMF) embedded in a flexible printed circuit board(FPCB) is proposed for a multi-function cable. The CMF embedded in a FPC cable presents a new concept as a multi-function cable by the common mode rejection characteristics without a surface mounted device(SMD) CMF. The embedded CMF has a wideband common mode rejection bandwidth and an enhanced differential mode characteristics compared to conventional CMFs that use a magnetic material such as a ferrite of high loss. The proposed CMF of 3 turn inductors has a common mode rejection bandwidth from 0.4 GHz to 3.12 GHz and has 1.95 dB at 3 GHz, 6.97 dB at 8 GHz improvements of a differential mode insertion loss compared to the commercial LTCC(Low Temperature Co-fire Ceramics) CMFs.

Matching Technology Between Nip Roll Characteristics and Quality of Print Pattern in Roll-to-Roll Printed Electronics Systems (롤투롤 전자인쇄 시스템에서 Nip Roll 의 특성에 따른 인쇄 패턴의 품질에 대한 매칭기술 연구)

  • Choi, Jea-Won;Shin, Kee-Hyun;Lee, Chang-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.173-178
    • /
    • 2012
  • Currently, active research is being performed on printing of electronic devices such as RFID devices, flexible displays, solar cells, and e-paper. This technique has several advantages over existing technologies such as lithography and etching. In particular, RFID devices, flexible displays, solar cells, and e-paper require flexibility and a mass production system. Thus, attention is being focused on the roll-to-roll process. High quality should be guaranteed in the roll-to-roll printed electronics systems, and good thickness and roughness qualities must be ensured. Experimental design was applied to this problem to analyze the main effects and interaction effects of various factors. Matching technology between the nip roll characteristics and the quality of the print pattern in roll-to-roll printed electronics systems was proposed to improve the printing quality.