DOI QR코드

DOI QR Code

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process

O2 플라즈마 표면 처리 공정 후 라미네이션 공정으로 제작된 흑연 페이스트 기반의 저비용 및 고감도 유연 압력 센서

  • Nam, Hyun Jin (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kang, Cheol (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Lee, Seung-Woo (Department of Fine Chemistry, Seoul National University of Science and Technology) ;
  • Kim, Sun Woo (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Park, Se-Hoon (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI))
  • 남현진 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 강철 (서울과학기술대학교 일반대학원 정밀화학과) ;
  • 이승우 (서울과학기술대학교 일반대학원 정밀화학과) ;
  • 김선우 (한국전자기술연구원 ICT디바이스패키징연구센터) ;
  • 박세훈 (한국전자기술연구원 ICT디바이스패키징연구센터)
  • Received : 2022.11.18
  • Accepted : 2022.12.05
  • Published : 2022.12.30

Abstract

Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.

저렴한 전도성 흑연을 인쇄전자 공법으로 유연 압력 센서를 개발하였다. 유연 압력 센서는 의료, 게임, AI 등 미래 산업에 활용될 소재로 각광받고 있다. 유연 압력 센서용 인쇄전극을 다양한 전기-기계적 특성을 평가한 결과 최대인장률 20%, 30°의 인장/굽힘, 간이 맥박 시험에서 일정한 저항 변화율을 보였다. 이렇게 검증이 완료된 전극을 시뮬레이션하여 더 적합한 matrix 패턴을 설계하였다. Serpentine 패턴을 활용하여 matrix 패턴 제작과 인캡슐레이션을 동시에 진행할 수 있는 공정을 활용하였다. 인쇄된 흑연 전극의 한쪽 면에 접착력 증가를 위한 O2 플라즈마 표면처리하고, 90°회전시켜, 라미네이션 공정을 통해 2개의 전극을 하나로 제작하였다. 이렇게 제작된 matrix 패턴을 인체의 손목 맥박 위치에 부착하여 실측을 진행한 결과 남녀 상관없이 일정한 저항 변화율을 보였다.

Keywords

Acknowledgement

본 연구는 산업통상자원부 산업핵심기술개발사업 "FanOut 반도체 Packaging을 위한 Plasma 처리 장치 개발"의 지원으로 수행되었습니다. (과제번호 20011196)

References

  1. J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603-1607 (2010). https://doi.org/10.1126/science.1182383
  2. A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, "Materials and applications for large area electronics: solution-based approaches", Chem. Rev., 110(1), 3 (2010). https://doi.org/10.1021/cr900150b
  3. M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok and Z. Bao, "25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress", Adv. mater., 25(42), 5997 (2013). https://doi.org/10.1002/adma.201302240
  4. M. Berggren, D. Nilsson and N. D. Robinson, "Organic materials for printed electronics", Nat. Mater., 6(1), 3 (2007). https://doi.org/10.1038/nmat1817
  5. A. Kamyshny and S. Magdassi, "Conductive nanomaterials for printed electronics", Small, 10(17), 3515 (2014). https://doi.org/10.1002/smll.201303000
  6. J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink and U. S. Schubert, "Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials", J. Mater. Chem., 20(39), 8446 (2010). https://doi.org/10.1039/c0jm00264j
  7. J. A. Lewis and B. Y. Ahn, "Three-dimensional printed electronics", Nature, 518(7537), 42 (2015). https://doi.org/10.1038/518042a
  8. A. E. Ostfeld, I. Deckman, A. M. Gaikwad, C. M. Lochner and A. C. Arias, "Screen printed passive components for flexible power electronics", Sci. Rep., 5(1), 1 (2015).
  9. G. Grau, J. Cen, H. Kang, R. Kitsomboonloha, W. J. Scheideler and V. Subramanian, "Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices", Flex. Print. Electron., 1(2), 023002 (2016). https://doi.org/10.1088/2058-8585/1/2/023002
  10. N. Palavesam, S. Marin, D. Hemmetzberger, C. Landesberger, K. Bock and C. Kutter, "Roll-to-roll processing of film substrates for hybrid integrated flexible electronics", Flex. Print. Electron., 3(1), 014002 (2018). https://doi.org/10.1088/2058-8585/aaaa04
  11. W. Clemens, W. Fix, J. Ficker, A. Knobloch and A. Ullmann, "From polymer transistors toward printed electronics", J. Mater. Res., 19(7), 1963 (2004). https://doi.org/10.1557/JMR.2004.0263
  12. S. P. Chen, H. L. Chiu, P. H. Wang and Y. C. Liao, "Inkjet printed conductive tracks for printed electronics", ECS J. Solid State Sci. Technol., 4(4), P3026 (2015). https://doi.org/10.1149/2.0061504jss
  13. Y. Khan, F. J. Pavinatto, M. C. Lin, A. Liao, S. L. Swisher, K. Mann, V. Subramanian, and M. M. Maharbiz, A. C. Arias, "Inkjet-printed flexible gold electrode arrays for bioelectronic interfaces", Adv. Funct. Mater., 26(7), 1004 (2016). https://doi.org/10.1002/adfm.201503316
  14. J. Li, W. Tang, Q. Wang, W. Sun, Q. Zhang, X. Guo, X. Wang and F. Yan, "Solution-processable organic and hybrid gate dielectrics for printed electronics", Mater. Sci. Eng. R Rep., 127, 1 (2018). https://doi.org/10.1016/j.mser.2018.02.004
  15. A. M. Gaikwad, Y. Khan, A. E. Ostfeld, S. Pandya, S. Abraham, A. C. Arias, "Identifying orthogonal solvents for solution processed organic transistors", Org. Electron., 30, 18 (2016). https://doi.org/10.1016/j.orgel.2015.12.008
  16. S. K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, and S. Dasgupta, "Printed electronics based on inorganic semiconductors: From processes and materials to devices", Adv. Mater., 30(40), 1707600 (2018). https://doi.org/10.1002/adma.201707600
  17. W. J. Scheideler, R. Kumar, A. R. Zeumault and V. Subramanian, "Low-Temperature-Processed Printed Metal Oxide Transistors Based on Pure Aqueous Inks", Adv. Funct. Mater., 27(14), 1606062 (2017). https://doi.org/10.1002/adfm.201606062
  18. M. G. Mohammed and R. Kramer, "All-printed flexible and stretchable electronics", Adv. Mater., 29(19), 1604965 (2017). https://doi.org/10.1002/adma.201604965
  19. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency", Nature, 459(7244), 234 (2009). https://doi.org/10.1038/nature08003
  20. T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors", Nat. Mater., 8(6), 494 (2009). https://doi.org/10.1038/nmat2459
  21. F. Zare Bidoky, B. Tang, R. Ma, K. S. Jochem, W. J. Hyun, D. Song, S. J. Koester, T. P. Lodge and C. D. Frisbie, "Sub-3 V ZnO electrolyte-gated transistors and circuits with screen-printed and photo-crosslinked ion gel gate dielectrics: new routes to improved performance", Adv. Funct. Mater., 30(20), 1902028 (2020). https://doi.org/10.1002/adfm.201902028
  22. J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho and S. Jung, "Three-dimensional monolithic integration in flexible printed organic transistors", Nat. Commun., 10(1), 1 (2019). https://doi.org/10.1038/s41467-018-07882-8
  23. R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I. K. Yazdi, M. R. Dokmeci, A. Tamayol, A. Khademhosseini and B. Ziaie, "A low-cost flexible pH sensor array for wound assessment", Sens. Actuators B Chem., 229, 609 (2016). https://doi.org/10.1016/j.snb.2015.12.082
  24. K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H. Y. Y. Nyein, K. Takei and A. Javey, "Printed carbon nanotube electronics and sensor systems", Adv. Mater., 28(22), 4397 (2016). https://doi.org/10.1002/adma.201504958
  25. G. Mattana and D. Briand, "Recent advances in printed sensors on foil", Mater. Today, 19(2), 88 (2016). https://doi.org/10.1016/j.mattod.2015.08.001
  26. Y. Khan, D. Han, J. Ting, M. Ahmed, R. Nagisetty and A. C. Arias, "Organic multi-channel optoelectronic sensors for wearable health monitoring", IEEE Access, 7, 128114 (2019). https://doi.org/10.1109/access.2019.2939798
  27. Y. Zheng, Z. He, Y. Gao and J. Liu, "Direct desktop printed-circuits-on-paper flexible electronics", Sci. Rep., 3(1), 1 (2013).
  28. C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hinckley, I. Pochorovski, X. Yan, J. W. F. To, J. Y. Oh, J. B. H. Tok, Z. Bao and B. Murmann, "Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors", Nat. Electron., 1(3), 183 (2018). https://doi.org/10.1038/s41928-018-0041-0
  29. D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao, J. Si, L. Xu, C. Qiu and L. M. Peng, "Gigahertz integrated circuits based on carbon nanotube films", Nat. Electron., 1(1), 40 (2018). https://doi.org/10.1038/s41928-017-0003-y
  30. C. P. Wong, D. B. Clegg, A. H. Kumar, K. Otsuka and B. Ozmat, "Package sealing and encapsulation", In Microelectronics Packaging Handbook, pp. 873-930, Springer, Boston, MA. (1997).
  31. K. Bark, J. W. Wheeler, S. Premakumar and M. R. Cutkosky, "Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information", In 2008 Symposium on haptic interfaces for virtual environment and teleoperator systems(IEEE), 71 (2008).
  32. S. T. Patton, C. Chen, J. Hu, L. Grazulis, A. M. Schrand and A. K. Roy, "Characterization of thermoplastic polyurethane (TPU) and Ag-carbon black TPU nanocomposite for potential application in additive manufacturing", Polymers, 9(1), 6 (2016). https://doi.org/10.3390/polym9010006
  33. H. J. Qi and M. C. Boyce, "Stress-strain behavior of thermoplastic polyurethanes", Mech. Mater., 37(8), 817 (2005). https://doi.org/10.1016/j.mechmat.2004.08.001
  34. H. J. Nam, S. Y. Kang, J. Y. Park and S. H. Choa, "Intense pulse light sintering of an Ag microparticle-based, highly stretchable, and conductive electrode", Microelectron. Eng., 215, 111012 (2019). https://doi.org/10.1016/j.mee.2019.111012