Browse > Article
http://dx.doi.org/10.6117/kmeps.2022.29.4.021

Low Cost and High Sensitivity Flexible Pressure Sensor Based on Graphite Paste through Lamination after O2 Plasma Surface Treatment Process  

Nam, Hyun Jin (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI))
Kang, Cheol (Department of Fine Chemistry, Seoul National University of Science and Technology)
Lee, Seung-Woo (Department of Fine Chemistry, Seoul National University of Science and Technology)
Kim, Sun Woo (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI))
Park, Se-Hoon (ICT device packaging Research Center, Korea Electronics Technology Institute (KETI))
Publication Information
Journal of the Microelectronics and Packaging Society / v.29, no.4, 2022 , pp. 21-27 More about this Journal
Abstract
Flexible pressure sensor was developed using low-cost conductive graphite as printed electronics. Flexible pressure sensors are attracting attention as materials to be used in future industries such as medical, games, and AI. As a result of evaluating various electromechanical properties of the printed electrode for flexible pressure sensors, it showed a constant resistance change rate in a maximum tensile rate of 20%, 30° tension/bending, and a simple pulse test. A more appropriate matrix pattern was designed by simulating the electrodes for which this verification was completed. Utilizing the Serpentine pattern, we utilized a process that allows simultaneous fabrication and encapsulation of the matrix pattern. One side of the printed graphite electrode was O2 plasma surface treated to increase adhesive strength, rotated 90 times, and two electrodes were made into one through a lamination process. As a result of pasting the matrix pattern prepared in this way to the wrist pulse position of the human body and proceeding with the actual measurement, a constant rate of resistance change was shown regardless of gender.
Keywords
Flexible pressure sensors; Low-cost graphite paste; Printed electronics; $O_2$ plasma treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Zare Bidoky, B. Tang, R. Ma, K. S. Jochem, W. J. Hyun, D. Song, S. J. Koester, T. P. Lodge and C. D. Frisbie, "Sub-3 V ZnO electrolyte-gated transistors and circuits with screen-printed and photo-crosslinked ion gel gate dielectrics: new routes to improved performance", Adv. Funct. Mater., 30(20), 1902028 (2020).   DOI
2 K. Chen, W. Gao, S. Emaminejad, D. Kiriya, H. Ota, H. Y. Y. Nyein, K. Takei and A. Javey, "Printed carbon nanotube electronics and sensor systems", Adv. Mater., 28(22), 4397 (2016).   DOI
3 C. P. Wong, D. B. Clegg, A. H. Kumar, K. Otsuka and B. Ozmat, "Package sealing and encapsulation", In Microelectronics Packaging Handbook, pp. 873-930, Springer, Boston, MA. (1997).
4 H. J. Qi and M. C. Boyce, "Stress-strain behavior of thermoplastic polyurethanes", Mech. Mater., 37(8), 817 (2005).   DOI
5 Y. Zheng, Z. He, Y. Gao and J. Liu, "Direct desktop printed-circuits-on-paper flexible electronics", Sci. Rep., 3(1), 1 (2013).
6 J. A. Rogers, T. Someya and Y. Huang, "Materials and mechanics for stretchable electronics", Science, 327(5973), 1603-1607 (2010).   DOI
7 A. C. Arias, J. D. MacKenzie, I. McCulloch, J. Rivnay and A. Salleo, "Materials and applications for large area electronics: solution-based approaches", Chem. Rev., 110(1), 3 (2010).   DOI
8 M. Berggren, D. Nilsson and N. D. Robinson, "Organic materials for printed electronics", Nat. Mater., 6(1), 3 (2007).   DOI
9 A. Kamyshny and S. Magdassi, "Conductive nanomaterials for printed electronics", Small, 10(17), 3515 (2014).   DOI
10 J. A. Lewis and B. Y. Ahn, "Three-dimensional printed electronics", Nature, 518(7537), 42 (2015).   DOI
11 A. E. Ostfeld, I. Deckman, A. M. Gaikwad, C. M. Lochner and A. C. Arias, "Screen printed passive components for flexible power electronics", Sci. Rep., 5(1), 1 (2015).
12 N. Palavesam, S. Marin, D. Hemmetzberger, C. Landesberger, K. Bock and C. Kutter, "Roll-to-roll processing of film substrates for hybrid integrated flexible electronics", Flex. Print. Electron., 3(1), 014002 (2018).   DOI
13 W. Clemens, W. Fix, J. Ficker, A. Knobloch and A. Ullmann, "From polymer transistors toward printed electronics", J. Mater. Res., 19(7), 1963 (2004).   DOI
14 T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata and T. Someya, "Stretchable active-matrix organic light-emitting diode display using printable elastic conductors", Nat. Mater., 8(6), 494 (2009).   DOI
15 R. Rahimi, M. Ochoa, T. Parupudi, X. Zhao, I. K. Yazdi, M. R. Dokmeci, A. Tamayol, A. Khademhosseini and B. Ziaie, "A low-cost flexible pH sensor array for wound assessment", Sens. Actuators B Chem., 229, 609 (2016).   DOI
16 J. Li, W. Tang, Q. Wang, W. Sun, Q. Zhang, X. Guo, X. Wang and F. Yan, "Solution-processable organic and hybrid gate dielectrics for printed electronics", Mater. Sci. Eng. R Rep., 127, 1 (2018).   DOI
17 S. K. Garlapati, M. Divya, B. Breitung, R. Kruk, H. Hahn, and S. Dasgupta, "Printed electronics based on inorganic semiconductors: From processes and materials to devices", Adv. Mater., 30(40), 1707600 (2018).   DOI
18 W. J. Scheideler, R. Kumar, A. R. Zeumault and V. Subramanian, "Low-Temperature-Processed Printed Metal Oxide Transistors Based on Pure Aqueous Inks", Adv. Funct. Mater., 27(14), 1606062 (2017).   DOI
19 S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem and K. Leo, "White organic light-emitting diodes with fluorescent tube efficiency", Nature, 459(7244), 234 (2009).   DOI
20 G. Mattana and D. Briand, "Recent advances in printed sensors on foil", Mater. Today, 19(2), 88 (2016).   DOI
21 Y. Khan, D. Han, J. Ting, M. Ahmed, R. Nagisetty and A. C. Arias, "Organic multi-channel optoelectronic sensors for wearable health monitoring", IEEE Access, 7, 128114 (2019).   DOI
22 H. J. Nam, S. Y. Kang, J. Y. Park and S. H. Choa, "Intense pulse light sintering of an Ag microparticle-based, highly stretchable, and conductive electrode", Microelectron. Eng., 215, 111012 (2019).   DOI
23 C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hinckley, I. Pochorovski, X. Yan, J. W. F. To, J. Y. Oh, J. B. H. Tok, Z. Bao and B. Murmann, "Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors", Nat. Electron., 1(3), 183 (2018).   DOI
24 D. Zhong, Z. Zhang, L. Ding, J. Han, M. Xiao, J. Si, L. Xu, C. Qiu and L. M. Peng, "Gigahertz integrated circuits based on carbon nanotube films", Nat. Electron., 1(1), 40 (2018).   DOI
25 J. Kwon, Y. Takeda, R. Shiwaku, S. Tokito, K. Cho and S. Jung, "Three-dimensional monolithic integration in flexible printed organic transistors", Nat. Commun., 10(1), 1 (2019).   DOI
26 K. Bark, J. W. Wheeler, S. Premakumar and M. R. Cutkosky, "Comparison of skin stretch and vibrotactile stimulation for feedback of proprioceptive information", In 2008 Symposium on haptic interfaces for virtual environment and teleoperator systems(IEEE), 71 (2008).
27 S. T. Patton, C. Chen, J. Hu, L. Grazulis, A. M. Schrand and A. K. Roy, "Characterization of thermoplastic polyurethane (TPU) and Ag-carbon black TPU nanocomposite for potential application in additive manufacturing", Polymers, 9(1), 6 (2016).   DOI
28 M. L. Hammock, A. Chortos, B. C. K. Tee, J. B. H. Tok and Z. Bao, "25th anniversary article: the evolution of electronic skin (e-skin): a brief history, design considerations, and recent progress", Adv. mater., 25(42), 5997 (2013).   DOI
29 Y. Khan, F. J. Pavinatto, M. C. Lin, A. Liao, S. L. Swisher, K. Mann, V. Subramanian, and M. M. Maharbiz, A. C. Arias, "Inkjet-printed flexible gold electrode arrays for bioelectronic interfaces", Adv. Funct. Mater., 26(7), 1004 (2016).   DOI
30 A. M. Gaikwad, Y. Khan, A. E. Ostfeld, S. Pandya, S. Abraham, A. C. Arias, "Identifying orthogonal solvents for solution processed organic transistors", Org. Electron., 30, 18 (2016).   DOI
31 J. Perelaer, P. J. Smith, D. Mager, D. Soltman, S. K. Volkman, V. Subramanian, J. G. Korvink and U. S. Schubert, "Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials", J. Mater. Chem., 20(39), 8446 (2010).   DOI
32 G. Grau, J. Cen, H. Kang, R. Kitsomboonloha, W. J. Scheideler and V. Subramanian, "Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices", Flex. Print. Electron., 1(2), 023002 (2016).   DOI
33 S. P. Chen, H. L. Chiu, P. H. Wang and Y. C. Liao, "Inkjet printed conductive tracks for printed electronics", ECS J. Solid State Sci. Technol., 4(4), P3026 (2015).   DOI
34 M. G. Mohammed and R. Kramer, "All-printed flexible and stretchable electronics", Adv. Mater., 29(19), 1604965 (2017).   DOI