• 제목/요약/키워드: flexible display

검색결과 724건 처리시간 0.047초

Study of Magnetic Field Shielded Sputtering Process as a Room Temperature High Quality ITO Thin Film Deposition Process

  • Lee, Jun-Young;Jang, Yun-Sung;Lee, You-Jong;Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.288-289
    • /
    • 2011
  • Indium Tin Oxide (ITO) is a typical highly Transparent Conductive Oxide (TCO) currently used as a transparent electrode material. Most widely used deposition method is the sputtering process for ITO film deposition because it has a high deposition rate, allows accurate control of the film thickness and easy deposition process and high electrical/optical properties. However, to apply high quality ITO thin film in a flexible microelectronic device using a plastic substrate, conventional DC magnetron sputtering (DMS) processed ITO thin film is not suitable because it needs a high temperature thermal annealing process to obtain high optical transmittance and low resistivity, while the generally plastic substrates has low glass transition temperatures. In the room temperature sputtering process, the electrical property degradation of ITO thin film is caused by negative oxygen ions effect. This high energy negative oxygen ions(about over 100eV) can be critical physical bombardment damages against the formation of the ITO thin film, and this damage does not recover in the room temperature process that does not offer thermal annealing. Hence new ITO deposition process that can provide the high electrical/optical properties of the ITO film at room temperature is needed. To solve these limitations we develop the Magnetic Field Shielded Sputtering (MFSS) system. The MFSS is based on DMS and it has the plasma limiter, which compose the permanent magnet array (Fig.1). During the ITO thin film deposition in the MFSS process, the electrons in the plasma are trapped by the magnetic field at the plasma limiters. The plasma limiter, which has a negative potential in the MFSS process, prevents to the damage by negative oxygen ions bombardment, and increases the heat(-) up effect by the Ar ions in the bulk plasma. Fig. 2. shows the electrical properties of the MFSS ITO thin film and DMS ITO thin film at room temperature. With the increase of the sputtering pressure, the resistivity of DMS ITO increases. On the other hand, the resistivity of the MFSS ITO slightly increases and becomes lower than that of the DMS ITO at all sputtering pressures. The lowest resistivity of the DMS ITO is $1.0{\times}10-3{\Omega}{\cdot}cm$ and that of the MFSS ITO is $4.5{\times}10-4{\Omega}{\cdot}cm$. This resistivity difference is caused by the carrier mobility. The carrier mobility of the MFSS ITO is 40 $cm^2/V{\cdot}s$, which is significantly higher than that of the DMS ITO (10 $cm^2/V{\cdot}s$). The low resistivity and high carrier mobility of the MFSS ITO are due to the magnetic field shielded effect. In addition, although not shown in this paper, the roughness of the MFSS ITO thin film is lower than that of the DMS ITO thin film, and TEM, XRD and XPS analysis of the MFSS ITO show the nano-crystalline structure. As a result, the MFSS process can effectively prevent to the high energy negative oxygen ions bombardment and supply activation energies by accelerating Ar ions in the plasma; therefore, high quality ITO can be deposited at room temperature.

  • PDF

The improvement of electrical properties of InGaZnO (IGZO)4(IGZO) TFT by treating post-annealing process in different temperatures.

  • Kim, Soon-Jae;Lee, Hoo-Jeong;Yoo, Hee-Jun;Park, Gum-Hee;Kim, Tae-Wook;Roh, Yong-Han
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.169-169
    • /
    • 2010
  • As display industry requires various applications for future display technology, which can guarantees high level of flexibility and transparency on display panel, oxide semiconductor materials are regarded as one of the best candidates. $InGaZnO_4$(IGZO) has gathered much attention as a post-transition metal oxide used in active layer in thin-film transistor. Due to its high mobility fabricated at low temperature fabrication process, which is proper for application to display backplanes and use in flexible and/or transparent electronics. Electrical performance of amorphous oxide semiconductors depends on the resistance of the interface between source/drain metal contact and active layer. It is also affected by sheet resistance on IGZO thin film. Controlling contact/sheet resistance has been a hot issue for improving electrical properties of AOS(Amorphous oxide semiconductor). To overcome this problem, post-annealing has been introduced. In other words, through post-annealing process, saturation mobility, on/off ratio, drain current of the device all increase. In this research, we studied on the relation between device's resistance and post-annealing temperature. So far as many post-annealing effects have been reported, this research especially analyzed the change of electrical properties by increasing post-annealing temperature. We fabricated 6 main samples. After a-IGZO deposition, Samples were post-annealed in 5 different temperatures; as-deposited, $100^{\circ}C$, $200^{\circ}C$, $300^{\circ}C$, $400^{\circ}C$ and $500^{\circ}C$. Metal deposition was done on these samples by using Mo through E-beam evaporation. For analysis, three analysis methods were used; IV-characteristics by probe station, surface roughness by AFM, metal oxidation by FE-SEM. Experimental results say that contact resistance increased because of the metal oxidation on metal contact and rough surface of a-IGZO layer. we can suggest some of the possible solutions to overcome resistance effect for the improvement of TFT electrical performances.

  • PDF

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

Al Doped ZnO층 적용을 통한 ZnO 박막 트랜지스터의 전기적 특성과 안정성 개선 (Improvement of Electrical Performance and Stability in ZnO Channel TFTs with Al Doped ZnO Layer)

  • 엄기윤;정광석;윤호진;김유미;양승동;김진섭;이가원
    • 한국전기전자재료학회논문지
    • /
    • 제28권5호
    • /
    • pp.291-294
    • /
    • 2015
  • Recently, ZnO based oxide TFTs used in the flexible and transparent display devices are widely studied. To apply to OLED display switching devices, electrical performance and stability are important issues. In this study, to improve these electrical properties, we fabricated TFTs having Al doped Zinc Oxide (AZO) layer inserted between the gate insulator and ZnO layer. The AZO and ZnO layers are deposited by Atomic layer deposition (ALD) method. I-V transfer characteristics and stability of the suggested devices are investigated under the positive gate bias condition while the channel defects are also analyzed by the photoluminescence spectrum. The TFTs with AZO layer show lower threshold voltage ($V_{th}$) and superior sub-threshold slop. In the case of $V_{th}$ shift after positive gate bias stress, the stability is also better than that of ZnO channel TFTs. This improvement is thought to be caused by the reduced defect density in AZO/ZnO stack devices, which can be confirmed by the photoluminescence spectrum analysis results where the defect related deep level emission of AZO is lower than that of ZnO layer.

유기 전기 발광소자의 원리와 연구동향 (Research Trends in Organic Light Emitting Diode)

  • 신환규;김승호;이재현;이하윤;정효철;박종욱
    • 공업화학
    • /
    • 제26권4호
    • /
    • pp.381-388
    • /
    • 2015
  • 유기 발광 다이오드(OLED)는 학문 및 산업분야에서 많은 관심을 받아 왔으며, 소자가 갖는 우수한 장점을 바탕으로 모바일 디스플레이뿐만 아니라 대면적 TV, 차세대 굴곡형 디스플레이의 적용이 활발하게 진행되고 있다. 또한 OLED 재료의 연구와 소자제작 기술의 응용 연구 범위를 넓혀가고 있다. 본 논문에서는 이러한 OLED에 대한 기본적인 소자구성 및 원리를 설명하고, 다양한 화학구조를 응용한 OLED 재료를 각각의 용도에 맞게 분류 정리하였다. 이러한 OLED 기술의 개념과 재료의 특성을 체계적으로 분류함으로써 새로운 발광 재료를 연구하고 개발함에 있어서 많은 도움이 되리라고 생각한다.

View Scalability를 고려한 다시점 동영상 코덱 (Multiview Video Sequence CODEC with View Scalability)

  • 임정은;손광훈
    • 방송공학회논문지
    • /
    • 제9권3호
    • /
    • pp.236-245
    • /
    • 2004
  • 본 논문에서는 view scalability를 고려한 3차원 다시점 동영상 코덱을 제안한다. 다시점 동영상을 효율적으로 부호화하기 위하여 부호화의 기본 단위로는 GGOP (Group of GOP) 구조를 제안하며 그 GGOP 구조는 시점의 수와 카메라 사이의 베이스 라인의 간격에 따라 유동적으로 여러 가지 타입을 가질 수 있다 제안된 다시점 동영상 부호기는 전처리, 변이 추정/보상, 움직임 추정/보상, 차영상 부호화, 비트율 제어로 구성되며 다시점 동영상 비트열을 생성하게 된다. MPEG-2와의 호환성을 위하여 기준이 되는 동영상은 MPEG-2로 부호화를 수행하여 메인 비트열을 생성하였고, 나머지 시점들에 해당되는 동영상들은 변이 벡터 및 움직임 벡터를 이용하여 보조 비트열을 생성하여 복호단에 전송된다. 다시점 동영상 복호기는 메인 비트열을 복호하기 위한 MPEG-2 복호기와 보조 비트열을 복호하기 위한 복호기로 구성된다. 또한, 수신단에서 보유하고 있는 디스플레이의 특징에 따라 원하는 시점만을 선택하여 복호화를 가능하게 할 수 있는 view scalability 기능을 제안한다. 실험을 통하여 제안한 다시점 동영상 코덱의 GGOP 구조의 유동성, MPEG-2와의 호환성, view scalability의 성능을 확인하였다. 또한 view scalability로 원하는 시점만을 복원한 3차원 동영상을 여러 종류의 3차원 다시점 모니터에 디스플레이를 하여 주관적인 성능을 확인하였다

여자 대학생의 니트웨어 착용실태와 선호 디자인 연구 (A Study on the Actual Wearing Conditions and Preferred Designs of Knitwear for Female College Students)

  • 최해주
    • 복식
    • /
    • 제66권8호
    • /
    • pp.98-108
    • /
    • 2016
  • Knitwear has been used as an active and functional clothing item due to its flexible and soft nature. Diverse design expressions have made knitwear into an essential fashion item for people today, who are constantly seeking for ways to display their individualism. The purpose of this study is to analyze the actual wearing conditions, and the preferred designs of knitwear for female college students in order to provide a baseline data, which can be used to develop knitwear designs for the subjects of the study. Survey by questionnaire of 135 female college students in 3 universities in Seoul were analysed. The results of the study are as follows: First, the most owned knitwear were sweaters and cardigans. Knitwear was viewed as soft and warm, as well as versatile. It was not restricted to certain sizes, and was comfortable to wear for different activities. Seound, the most preferred items were sweaters and cardigans. The most preferred styles were round neckline sweaters and open V-neckline cardigans. Third, the most preferred designs were plain designs with achromatic colors and wool-blended fabrics. The most preferred images were simple images. The most preferred fit was loose enough for little bit of room inside. Fourth, appropriateness and design of the knitwear were assessed during the purchasing stage. the most preferred method of purchase was purchasing via online stores after researching the knitwear through various channels, such as store visits and the Internet. The preferred price of knitwear was below 100,000 KRW. Fifth, the most common complaints were as follows: changes in the shape and quality of the knitwear after a wash, appearance of nap, and loose threads. In short, it is necessary for female college students to develop high quality knitwear with designs that can display individuality, while being simple.

유연성 유기물 transistor를 제작을 위한 고유전 박막 위에서의 Pentacene의 특성 (Characteristics of Pentacene on High-k Film for Flexible Organic Field Effect Transistor)

  • 이순우;이상설;박정호;박인성;설영국;이내응;안진호
    • 마이크로전자및패키징학회지
    • /
    • 제13권2호
    • /
    • pp.27-31
    • /
    • 2006
  • 본 연구는 OTS 표면 처리 유무에 따른 $HfO_2$ 위에서의 pentacene의 grain growth를 비교 연구하였다. OTS 처리에 의해 $HfO_2$의 표면은 hydrophilic에서 hydrophobic으로 변화되었으며, pentacene의 grain size는 50 nm 에서 90 nm으로 증가되었다. 이러한 pentacene의 크기 증가와 더불어 pentacene은 3-dimensional island 구조를 가지며, bulk phase 없이 thin film phase만의 출현으로 인해 OTS/$HfO_2$ 박막 위에서 pentacene은 보다 방향성을 가지며 정렬되었다.

  • PDF

횡 초음파를 이용한 차세대 플렉시블 디스플레이 모듈 저온 접합 공정 연구 (Study of a Low-Temperature Bonding Process for a Next-Generation Flexible Display Module Using Transverse Ultrasound)

  • 지명구;송춘삼;김주현;김종형
    • 대한기계학회논문집A
    • /
    • 제36권4호
    • /
    • pp.395-403
    • /
    • 2012
  • 오늘날 접합시 열에 의한 재료 손상과 접착제(ACA, NCA) 이용으로 부품간의 정렬이 문제가 되고있다. 따라서, 본 논문은 FPCB 와 HPCB 금속(Au) PAD를 직접 접합하였다. 이때 박막인 재료에 손상을 입히는 열, 부품간의 정렬에 문제가 되는 접착제(ACA, NCA)를 사용하지 않고 상온에서 접합을 하였다. 접합시 초음파 혼을 이용하여 접합을 하였으며, 초음파혼은 40kHz이다. 공정 조건은 접합압력 0.60MPa, 접합시간 0.5, 1.0, 1.5, 2.0sec이다. 또한, 산업에서 요구하는 접합강도는 필강도 테스트 결과값으로 0.60Kgf 이상이며, 본 실험에서는 접합강도가 0.80MPa 이상이 나왔다. 이로서, 열에 의한 재료 손상과, 접 착제(ACA, NCA)에 의한 정렬 문제를 해결하였다. 그리고 산업산업에서 바로 적용하고 생산할 수 있는 FPCB, HPCB 시료 제작을 하였다.

외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링 (Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling)

  • 석종원;이주홍;김필기
    • 반도체디스플레이기술학회지
    • /
    • 제10권1호
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.