Browse > Article
http://dx.doi.org/10.14478/ace.2015.1077

Research Trends in Organic Light Emitting Diode  

Shin, Hwangyu (Department of Chemistry, Catholic University of Korea)
Kim, Seungho (Department of Chemistry, Catholic University of Korea)
Lee, Jaehyun (Department of Chemistry, Catholic University of Korea)
Lee, Hayoon (Department of Chemistry, Catholic University of Korea)
Jung, Hyocheol (Department of Chemistry, Catholic University of Korea)
Park, Jongwook (Department of Chemistry, Catholic University of Korea)
Publication Information
Applied Chemistry for Engineering / v.26, no.4, 2015 , pp. 381-388 More about this Journal
Abstract
Organic Light Emitting Diodes (OLEDs) have been receiving great attention in academic and industrial fields, and it is being actively applied to mobile display, as well as large area TV and next-generation flexible display due to their excellent advantages. In addition, the scope of research on OLED materials and device fabrication technology is getting expanded. This review discusses the principle and basic composition of OLED and also classifies OLED materials with different chemical structures according to their usages. Systematic classification of OLEDs by technical concept and material characteristics can help developing new emitting materials.
Keywords
organic light emitting diode; fluorescence; phosphorescence; hole transporting layer; electron transporting layer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Shen, P. E. Burrows, V. Bulovic, S. R. Forrest, and M. E. Thompson, Three-color, tunable, organic light-emitting devices, Science, 276, 2009-2011 (1997).   DOI   ScienceOn
2 S. R. Forrest, The road to high efficiency organic light emitting devices, Org. Electron., 4, 45-48 (2003).   DOI   ScienceOn
3 A. R. Duggal, J. J. Shiang, C. M. Heller, and D. F. Foust, Organic light-emitting devices for illumination quality white light, Appl. Phys. Lett., 80, 3470-3472 (2002).   DOI   ScienceOn
4 B. W. D'Andrade and S. R. Forrest, White organic light-emitting devices for solid-state lighting, Adv. Mater., 16, 1585-1595 (2004).   DOI   ScienceOn
5 L. S. Cui, S. C. Dong, Y. Liu, Q. Li, Z. Q. Jiang, and L. S. Liao, A simple systematic design of phenylcarbazole derivatives for host materials to high-efficiency phosphorescent organic light-emitting diodes, J. Mater. Chem. C., 1, 3967-3975 (2013).   DOI
6 S. Inayama, N. Takahashi, Y. J. Pu, T. Chiba, H. Sasabe, and J. Kido, Syntheses of solution-processable arylamine derivatives and their application to organic light emitting devices, J. Photopolym. Sci. Techol., 25, 335-339 (2012).   DOI   ScienceOn
7 G. Liaptsis and K. Meerholz, Crosslinkable TAPC-based hole-transport materials for solution-processed organic light-emitting diodes with reduced efficiency roll-off, Adv. Funct. Mater., 23, 359-365 (2013).   DOI   ScienceOn
8 C. W. Lee and J. Y. Lee, Low driving voltage and high power efficiency in blue phosphorescent organic light-emitting diodes using aromatic amine derivatives with diphenylsilyl linkage, Synthetic Metals., 167, 1-4 (2013).   DOI   ScienceOn
9 H. Uoyama, K. Goushi,K. Shizu, H. Nomura, and C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 492, 234-240 (2012).   DOI   ScienceOn
10 C. J. Zheng, W. M. Zhao, Z. Q. Wang, D. Huang, J. Ye, X. M. Ou, X. H. Zhang, C. S. Lee, and S. T. Lee, Highly efficient non-doped deep-blue organic light-emitting diodes based on anthracene derivatives, J. Mater. Chem., 20, 1560-1566 (2010).   DOI   ScienceOn
11 K. C. Wu, P. J. Ku, C. S. Lin, H. T. Shih, F. I. Wu, M. J. Huang, J. J. Lin, I. C. Chen, and C. H. Cheng, The photophysical properties of dipyrenylbenzenes and their application as exceedingly efficient blue emitters for electroluminescent devices, Adv. Funct. Mater., 18, 67-75 (2008).   DOI   ScienceOn
12 C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, Highly efficient, near-infrared electro phos -phorrescence from a Pt-metalloporphyrin complex, Angew. Chem. Int. Ed., 119, 1127-1130 (2007).   DOI   ScienceOn
13 B. Wei, J. Z. Liu, Y. Zhang, J. H. Zhang, H. N. Peng, H. L. Fan, Y. B. He, and X. C. Gao, Stable, glassy, and versatile binaphthalene derivatives capable of efficient hole transport, hosting, and deep-blue light emission, Adv. Funct. Mater., 20, 2448-2458 (2010).   DOI   ScienceOn
14 Y. Yang, R. T. Farley, T. T. Steckler, S. H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers, J. Appl. Phys., 106, 044509-1-044509-7 (2009).   DOI   ScienceOn
15 J. P. Duan, P. P. Sun, and C. H. Cheng, New Iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes, Adv. Mater., 15, 224-228 (2003).   DOI   ScienceOn
16 Y. Tung, L. Chen, Y. Chi, P. Chou, Y. Cheng, E. Y. Li, G. H. Lee, C. F. Shu, F. I. Wu, and A. J. Carty, Orange and red organic light-emitting devices employing neutral Ru(II) emitters: rational design and prospects for color tuning, Adv. Funct. Mater., 16, 1615-1626 (2006).   DOI   ScienceOn
17 Y. L. Tung, P. C. Wu, C. S. Liu, Y. Chi, J. K. Yu, Y. H. Hu, P. T. Chou, S. M. Peng, G. H. Lee, Y. Tao, A. J. Carty, C. F. Shu, and F. I. Wu, Highly efficient red phosphorescent osmium(II) complexes for OLED applications, Organometallics, 23, 3745-3748 (2004).   DOI   ScienceOn
18 M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature, 395, 151-154 (1998).   DOI   ScienceOn
19 A. F. Rausch, M. E. Thompson, and H. Yersin, Matrix effects on the triplet state of the OLED emitter Ir(4,6-dFppy)2(pic) (FIrpic): investigations by high-resolution optical spectroscopy, Inorganic Chemistry, 48, 1928-1937 (2009).   DOI   ScienceOn
20 M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Applied Physics Letters., 75, 4-6 (1999).   DOI
21 S. Lee, S. O. Kim, H. Shin, H. J. Yun, K. Yang, S. K. Kwon, J. J. Kim, and Y. H. Kim, Deep-blue phosphorescence from perfluoro carbonyl-substituted Iridium complexes, J. Am. Chem. Soc., 135, 14321-14328 (2013).   DOI   ScienceOn
22 S. Oyston, C. Wang, G. Hughes, A. S. Batsanov, I. F. Perepichka, M. R. Bryce, J. H. Ahn, C. Pearson, and M. C. Petty, New 2,5-diaryl-1,3,4-oxadiazole-fluorene hybrids as electron transporting materials for blended-layer organic light emitting diodes, J. Mater. Chem., 15, 194-203 (2005).   DOI   ScienceOn
23 M. Ichikawa, T. Kawaguchi, K. Kobayashi, T. Miki, K. Furukawa, T. Koyama, and Y. Taniguchi, Bipyridyl oxadiazoles as efficient and durable electron-transporting and hole-blocking molecular materials, J. Mater. Chem., 16, 221-225 (2006).   DOI
24 S. J. Su, D. Tanaka, Y. J. Li, H. Sasabe, T. Takeda, and J. Kido, Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs, Org. Lett., 10, 941-944 (2008).   DOI   ScienceOn
25 H. Sasabe, T. Chiba, S. J. Su, Y. J. Pu, K. I. Nakayama, and J. Kido, 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices, Chem. Commun., 5821-5823 (2008).
26 D. Yokoyama, H. Sasabe, Y. Furukawa, C. Adachi, and J. Kido, Molecular stacking induced by intermolecular C-H...N hydrogen bonds leading to high carrier mobility in vacuum-deposited organic films, Adv. Funct. Mater., 21, 1375-1382 (2011).   DOI   ScienceOn