• Title/Summary/Keyword: flexible deformation

Search Result 387, Processing Time 0.027 seconds

Inelastic response of code-designed eccentric structures subject to bi-directional loading

  • Chandler, A.M.;Correnza, J.C.;Hutchinson, G.L.
    • Structural Engineering and Mechanics
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 1997
  • The influence of bi-directional earthquake-induced loading on eccentric (plan-asymmetric) building systems has been investigated. In the first part of the study, comparisons have been made with equivalent results from uni-directional studies. The results are important in developing analytical models appropriate to the formulation of design recommendations. It is concluded that for valid comparisons, both perpendicular horizontal earthquake components must be considered when using models with transversely-orientated elements. In the second part of the study, an assessment has been made of a simplified, unidirectional (lateral) design approach. For stiffness-eccentric systems, the latter approach gives accurate and reasonably conservative estimates of the critical flexible-edge deformation, but may under estimate the stiff-edge element ductility demand by a factor of two in the short-period range.

Spectral Element Modeling of the Rotating Shafts on Bearing Supports (베어링으로 지지된 회전축의 스펙트럴요소 모델링)

  • Lee, Jae-Sng;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.826-830
    • /
    • 2008
  • In this paper, the vibration of a rotating shaft with a thin rigid disk on bearing supports is considered. It is assumed that the shaft has uniform, circular cross-section. Based on the Timoshenko-beam theory, the transverse displacements and slops in two lateral directions, the axial displacement, and the torsional deformation are considered. And flexible supports are used to analyse the bearings. A spectral element model is developed for the vibration analysis of the rotating shaft with a thin rigid disk, which is modeled by two shaft elements and a thin rigid disk element. The result of vibration analysis by finite element method is compared to the result of this research.

  • PDF

Inelastic Buckling Analysis of Semi-rigid Frames with Shear Deformations by Haringx's Theories (Haringx의 전단변형 이론을 고려한 부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.3
    • /
    • pp.64-71
    • /
    • 2014
  • The generalized tangential stiffness matrix of semi-rigid frame element with shear deformations based on Haringx's shear theory is newly derived and compared with the previous study based on Engesser's shear theory. Also, linearized elastic and geometric stiffness matrices are newly presented from the exact tangential stiffness matrix. In oder to obtain the inelastic system buckling load of shear flexible semi-rigid frame structure, the Ef method by tangential modulus theory is adopted and the FE analysis programs are developed. Finally, the shear and semi-rigid effects of system bucking are investigated by two numerical examples.

A Study on the Structural Behavior of Cable Domes (케이블 돔의 구조적 거동 특성에 관한 연구)

  • 한상을;윤종현;이승훈;진영상;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.151-158
    • /
    • 2000
  • Cable dome that consists of three component such as cable, strut and fabric membrane has complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system and fabric membrane element is conceived as cladding roof material. One of the important problem of cable dome is to investigate the structural response from external load effect such as snow and wind. When cable dome is subjected to load each structural component has various special structural characteristics. One is that geometrical nonlinearity should be considered because large deformation is occurred from their flexible characteristic. The other is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper researches the physical structural response of cable dome structure and the structural behavior when failure occurred at a part of structure.

  • PDF

Free vibration analysis of rotating cantilever plates using the p-version of the finite element method

  • Hamza-Cherif, Sidi Mohammed
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.151-167
    • /
    • 2006
  • A p-version of the finite element method in conjunction with the modeling dynamic method using the arc-length stretch deformation is considered to determine the bending natural frequencies of a cantilever flexible plate mounted on the periphery of a rotating hub. The plate Fourier p-element is used to set up the linear equations of motion. The transverse displacements are formulated in terms of cubic polynomials functions used generally in FEM plus a variable number of trigonometric shapes functions representing the internals DOF for the plate element. Trigonometric enriched stiffness, mass and centrifugal stiffness matrices are derived using symbolic computation. The convergence properties of the rotating plate Fourier p-element proposed and the results are in good agreement with the work of other investigators. From the results of the computation, the influences of rotating speed, aspect ratio, Poisson's ratio and the hub radius on the natural frequencies are investigated.

Study of High Precision Mechanism For Loading/Unloading of Material (소재의 정밀 Loading/unloading 기술 개발)

  • Choi Hyeun-Seok;Tak Tae-Yul;Han Chang-Soo;Lee Nak-Kyu;Choi Tae-Hoon;Lee Hye-Jin
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.419-423
    • /
    • 2005
  • In microfactory, loading/unloading mechanism supply the row material to processing machines for manufacturing process such as pressing, cutting, plastic deformation. This mechanism for rnicrofactory is designed as modularity robot. Microfactory system have to be flexible structure for variety product item. For system flexibility, applied mechanisms are developed as moduality. Robot moduality needs the specific characteristics which are different from one of macro, typical robot system. In this paper, we discussed about the modularity robot. and proposed the loading/unloading mechanism for working in microfactory system.

  • PDF

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

A shape finding of cable net by nonlinear theory (비선형 이론을 이용한 케이블 네트의 형태안정)

  • 황보석;서삼열;권택진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.59-64
    • /
    • 1990
  • The cable structures undergo large deformation because of its highly flexibility. Therefore, we must take account of its geometric nonlinearity before analysis and find the equiribrated shape of cable structures. To solve these problems, a numerical procedures included nonlinear near theory which is applicable to general cable net, flexible transmission lines and suspended cable roofs, are presented in this paper. Now, this procedures are devided two parts : the one is to obtain the equibrated shape and stress of the cable structures applied uniform load by flexibility iteration method, the other is to analysis the equibrated structures subjected to nodal external forces by nonlinear finite element mothed. Its accuracy and efficiency are found to be comparable to some of other method and, in some aspect, it is mere applicable to cable structures.

  • PDF

Helical gear multi-contact tooth mesh load analysis with flexible bearings and shafts

  • Li, Chengwu;He, Yulin;Ning, Xianxiong
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.839-856
    • /
    • 2015
  • A multi-contact tooth meshing model for helical gear pairs considering bearing and shaft deformations is proposed. First, to easily incorporate into the system model, the complicated Harris' bearing force-displacement relationship is simplified applying a linear least square curve fit. Then, effects of shaft and bearing flexibilities on the helical gear meshing behavior are implemented through transformation matrices which contain the helical gear orientation and spatial displacement under loads. Finally, true contact lines between conjugated teeth are approximated applying a modified meshing equation that includes the influence of tooth flank displacement on the tooth contact induced by shaft and bearing displacements. Based on the model, the bearing's force-displacement relation is examined, and the effects of shaft deformation and external load on the multi-contact tooth mesh load distribution are also analyzed. The advantage of this work is, unlike previous works to search true contact lines through time-consuming iterative strategy, to determine true contact lines between conjugated teeth directly with presentation of deformations of bearings and shafts.

Estimations of the Hysteretic Damping by Controlled Joint Flexibilities (결합부 유연성에 따른 감쇠거동에 관한 고찰 : 히스테레틱 감쇠)

  • 윤성호
    • Journal of KSNVE
    • /
    • v.9 no.2
    • /
    • pp.258-264
    • /
    • 1999
  • The purpose of this paper is to investigate the damping behavior of a flexible joint. The slip at a structrual joint is selected at the tips of two identical cantilever beams adjoining each other. Both the direction of normal force and its magnitude varies due to the global deformation of the structure from mode to mode in the friction model. The friction dependent on vibration displacements resultsin the same functional behavior of the hysteretic material damping. Linearized energy loss factors are obtained as functions of both linear and torsional spring stiffness for their groups of symmetric and anti-symmetric modes, respectively. Experimental measurements as made for comparisons with analytical estimations by controlling the magnitude of fastening torque in the fastener, Hi-Lite. Trends on damping levelsmeasured in a very common vibration test method make an excellent agreement on the estimated damping levels.

  • PDF