• Title/Summary/Keyword: flexible battery

Search Result 60, Processing Time 0.026 seconds

Flexible Electronics Devices for Smart Card Applications

  • Hou, Jack;Kimball, Bob;Vincent, Bryan;Ratcliffe, Bill;Mahan, Mike
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.75-77
    • /
    • 2008
  • Flexible electronics devices such as plastic display, thin film battery, membrane switch, organic memory for smart card applications will be presented. The performance and power consumption of various display technologies will be compared for OTP requirement in smart cards. Wireless power transmission by RF coupling through an antenna provides a potential power solution to smart cards. Finally, the general trend of smart card future developments will be discussed.

  • PDF

Analysis, Design and Implementation of Flexible Interlaced Converter for Lithium Battery Active Balancing in Electric Vehicles

  • Dai, Shuailong;Wang, Jiayu;Li, Teng;Shan, Zhifei;Wei, Yewen
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.858-868
    • /
    • 2019
  • With the widespread use of modern clean energy, lithium-ion batteries have become essential as a more reliable energy storage component in the energy Internet. However, due to the difference in monomers, some of the battery over-charge or over-discharge in battery packs restrict their use. Therefore, a novel multiphase interleaved converter for reducing the inconsistencies of the individual cells in a battery pack is proposed in this paper. Based on the multiphase converter branches connected to each lithium battery, this circuit realizes energy transferred from any cell(s) to any other cell(s) complementarily. This flexible interlaced converter is composed of an improved bi-directional Buck-Boost circuit that is presented with its own available control method. A simulation model based on the PNGV model of fundamental equalization is built with four cells in PSIM. Simulation and experimental results demonstrate that converter and its control achieve simple and fast equalization. Furthermore, a comparison of traditional methods and the HNFABC equalization is provided to show the performance of the converter and the control of lithium-based battery stacks.

Current Collectors for Flexible Lithium Ion Batteries: A Review of Materials

  • Kim, Sang Woo;Cho, Kuk Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • With increasing interest in flexible electronic devices and wearable appliances, flexible lithium ion batteries are the most attractive candidates for flexible energy sources. During the last decade, many different kinds of flexible batteries have been reported. Although research of flexible lithium ion batteries is in its earlier stages, we have found that developing components that satisfy performance conditions under external deformation stress is a critical key to the success of flexible energy sources. Among the major components of the lithium ion battery, electrodes, which are connected to the current collectors, are gaining the most attention owing to their rigid and brittle character. In this mini review, we discuss candidate materials for current collectors and the previous strategies implemented for flexible electrode fabrication.

Recent Research Trends of Flexible Piezoelectric Nanofibers for Energy Conversion Materials (에너지 변환 소재용 플렉서블 압전 나노섬유 연구 개발 동향)

  • Ji, Sang Hyun;Yun, Ji Sun
    • Ceramist
    • /
    • v.22 no.2
    • /
    • pp.122-132
    • /
    • 2019
  • Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.

COIN형 리튬 폴리머전지의 충방전 특성

  • 박수길;박종은;손원근;이흥기;김상욱;이주성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.497-500
    • /
    • 1997
  • Conducting polymer is new material in lithium secondary battery. conducting polymer has a lot of merit which is flexible and good handing so that this material is used battery system, solid polymer electrolytes airs used PEO(Polyethylene oxide) and PEO/PMMA branding material adding by liquid plasticizer or lithium salt polymer electrolyte which is added liquid plasticizer, lithium salt decreased the crystallity and thermal stability is over than 13$0^{\circ}C$. it is very useful tn apply lithium secondary battery system.

  • PDF

A novel free-standing anode of CuO nanorods in carbon nanotube webs for flexible lithium ion batteries

  • Lee, Sehyun;Song, Hyeonjun;Hwang, Jun Yeon;Kim, Seung Min;Jeong, Youngjin
    • Carbon letters
    • /
    • v.27
    • /
    • pp.98-107
    • /
    • 2018
  • Free-standing electrodes of CuO nanorods in carbon nanotubes (CNTs) are developed by synthesizing porous CuO nanorods throughout CNT webs. The electrochemical performance of the free-standing electrodes is evaluated for their use in flexible lithium ion batteries (LIBs). The electrodes comprising CuO@CNT nanocomposites (NCs) were characterized by charge-discharge testing, cyclic voltammetry, and impedance measurement. These structures are capable of accommodating a high number of lithium ions as well as increasing stability; thus, an increase of capacity in long-term cycling and a good rate capability is achieved. We demonstrate a simple process of fabricating free-standing electrodes of CuO@CNT NCs that can be utilized in flexible LIBs with high performance in terms of capacity and cycling stability.

Reliability of metal films on flexible polymer substrate during cyclic bending deformations

  • Kim, Byeong-Jun;Jeong, Seong-Hun;Kim, Do-Geun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.244.1-244.1
    • /
    • 2016
  • Recently, the technology for flexible electronics such as flexible smart phone, foldable displays, and bendable battery is under active development. With approaching the real commercialization of flexible electronics, the electrical and mechanical reliability of flexible electronics have become significantly important because they will be used under various mechanical deformations such as bending, twisting, stretching, and so on. These mechanical deformations result in performance degradation of electronic devices due to several mechanical problems such as cracking, delamination, and fatigue. Therefore, the understanding of relationship between mechanical loading and electrical performance is one of the most critical issues in flexible electronics for expecting the lifetime of products. Here, we have investigated the effect of monotonic tensile and cyclic deformations on metal interconnect to provide a guideline for improving the reliability of flexible interconnect.

  • PDF

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.

Flexible Electronic Materials Industry Trend (플렉서블 전자소재 산업 동향)

  • Park, J.M.;Lee, S.Y.;Roh, T.M.;Lee, J.I.;Lee, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.65-75
    • /
    • 2021
  • In the era of the 4th industrial revolution, interest in flexible devices is increasing for information and communication technology electronic products. This is a hot technology field in which competition is intensifying to preoccupy the global market for flexible electronic devices because of the many advantages of ultra-lightweight, flexibility, design diversity, high applicability, and low cost. Some flexible electronic products have been commercialized in Korea, but they are still inadequate in terms of price versus performance, so technology development is required continuously. Particularly, the development of flexible electronic materials is emerging as a key factor for flexible electronic device applications. In this study, we will look into the flexible electronic material technology and industry trends following the trend of flexible technology changes in the display, secondary battery, and solar cell, which has emerged as national core industry and has secured global competitiveness. In addition, I want to introduce the Flexible Electronic Material Center, which was established to foster the flexible electronic material industry.

Enhanced Transdermal Delivery of Vitamin C Derivative using lontophoretic Gel Patch with Flexible Thin Layer Battery (Flexible Thin Layer Battery가 부착된 lontophoretic Gel Patch를 이용한 Vitamin C 유도체의 경피 흡수 증진)

  • Cho, Wan-Goo;Rang, Mun-Jeong;Song, Young-Sook;Lim, Young-Ho;Park, Hyeon-Woo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.23-28
    • /
    • 2007
  • Ascorbic acid (vitamin C, AsA) has been known as a strong reducing agent and is supposed to retard the synthesis of melanin pigment. A main problem that arose in using vitamin C in cosmetic formulation was its poor stability and low skin permeability, which result in low lightening efficacy in clinical trials. In this study, iontophoretic gel patch with flexible thin layer battery was employed in order to enhance skin permeation of vitamin c derivative (ascorbyl glucoside, AsAG) and to increase its lightening efficacy. in vitro iontophoretic skin permeation and stability of AsAG, safety and clinical lightening efficacy of iontophoretic patch containing 2% AsAG solution were examined. A optimun current of ionthophoretic patch for korean women was 0.1 mA, considering the skin permeability and skin irritation of consumers. We suggest that iontophoretic gel patch could be a safe system for enhancing the skin permeation of AsAG and lightning efficacy.