DOI QR코드

DOI QR Code

Recent Research Trends of Flexible Piezoelectric Nanofibers for Energy Conversion Materials

에너지 변환 소재용 플렉서블 압전 나노섬유 연구 개발 동향

  • Ji, Sang Hyun (Energy & Environment Division, Korea Institute of Ceramic Engineering &Technology) ;
  • Yun, Ji Sun (Energy & Environment Division, Korea Institute of Ceramic Engineering &Technology)
  • 지상현 (한국세라믹기술원, 에너지환경본부) ;
  • 윤지선 (한국세라믹기술원, 에너지환경본부)
  • Received : 2019.05.23
  • Accepted : 2019.06.10
  • Published : 2019.06.30

Abstract

Wearable electronic devices with batteries must be lightweight, flexible and highly durable. Most importantly, the battery should be able to self-generate to operate the devices without having to be too frequently charged externally. An eco-friendly energy harvesting technology from various sources, such as solar energy, electromagnetic energy and wind energy, has been developed for a self-charging flexible battery. Although the energy harvesting from such sources are often unstable according to the surrounding environment, the energy harvesting from body movements and vibrations has been less affected by the surrounding environment. In this regard, flexible piezoelectric modules are the most attractive solution for this issue, because they convert mechanical energy to electrical energy and harvest energy from the human body motions. Among the various flexible piezoelectric modules, piezoelectric nanofibers have advantages when used as an energy harvester in wearable devices, due to their simple manufacturing process with good applicability to polymers and ceramics. This review focused on diverse flexible piezoelectric nanofibers and discusses their applications as various energy harvesting systems.

Keywords

References

  1. L.Z. Broderick, B. R. Albert, B. S. Pearson, L. C. Kimerling, J. Michel, "Design for energy: Modeling of spectrum, temperature and device structure dependences of solar cell energy production," Sol. Energ. Mat. Sol. C., 136, 48-63 (2015). https://doi.org/10.1016/j.solmat.2014.12.034
  2. M. Cheng, Y. Zhu, "The state of the art of wind energy conversion systems and technologies: A review," Energ. Convers. Manage., 88, 332-347 (2014). https://doi.org/10.1016/j.enconman.2014.08.037
  3. S. Yilmaz, H. Selim, "A review on the methods for biomass to energy conversion systems design," Renew. Sust. Energ. Rev., 25, 420-430 (2013). https://doi.org/10.1016/j.rser.2013.05.015
  4. N. Chakhchaoui, H. Ennamiri, A. Hajjaji, A. Eddiai, M. Meddad, Y. Boughaled, "Theoretical modeling of piezoelectric energy harvesting in the system using technical textile as a support," Polym. Adv. Technol., 28, 1170-1178(2017). https://doi.org/10.1002/pat.4010
  5. L. Jiang, Y. Yang, R. Chen, G. Lu, R. Li, D. Li, M. S. Humayun, K. K. Shung, J. Zhu, Y. Chen, Q. Zhou, "Flexible piezoelectric ultrasonic energy harvester array for bio-implantable wireless generator," Nano Energy, 56, 216-224 (2019). https://doi.org/10.1016/j.nanoen.2018.11.052
  6. M. Byun, "Poly(vinylpyrrolidone)-modification of sol-gel films for flexible piezoelectric energy harvesting systems," Thin. Solid. Films, 663, 31-36 (2018). https://doi.org/10.1016/j.tsf.2018.08.014
  7. F. Chang, M. Dommer, C. Chang, L. Lin, "Piezoelectric nanofibers for energy scavenging applications," Nano Enegry, 1, 356-371(2012)
  8. M. Wu, Y. Wang, S. Gao, R. Wang, C. Ma, Z. Tang, N. Bao, W. Wu, F. Fan, W. Wu, "Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring," Nano Energy, 56, 693-699 (2019). https://doi.org/10.1016/j.nanoen.2018.12.003
  9. S. Tiwari, A. Gaur, C. Kumar, P. Maiti, Enhanced piezoelectric response in nanoclay induced electrospun PVDF nanofibers for energy harvesting," Energy, 171, 485-492 (2019). https://doi.org/10.1016/j.energy.2019.01.043
  10. X. Xue, Z. Qu, Y. Fu, B. Yu, L. Xing, Y. Zhang, "Self-powered electronic-skin for detecting glucose level in body fluid basing on piezo-enzymaticreaction coupling process," Nano Energy, 26, 148-156 (2016). https://doi.org/10.1016/j.nanoen.2016.05.021
  11. Global markets and technologies for nanofibers," BCC Research (2019)
  12. J. H. Yang, T. Ryu, Y. Lansac, Y. H. Jang, B. H. Lee, "Shear stress-induced enhancement of the piezoelectric properties of PVDF-TrFE thin films," Org. Electron. 28, 67-72 (2016). https://doi.org/10.1016/j.orgel.2015.10.018
  13. L. Wang, J. Zhu, X. Zou, F. Zhang, "$PbTiO_3$ -P(VDFrTeFE) composites for piezoelectric sensors," Sensor. Actuat. B-Chem., 66, 266-268 (2000). https://doi.org/10.1016/S0925-4005(00)00365-8
  14. J. S. Yun, C. K. Park, Y. H. Jeong, J. H. Cho, J.-H. Paik, S. H. Yoon, K.-R. Hwang, "The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites," Nanomater. Nanotechno. 149, 127-133(2017).
  15. X. Xu, Z. Wu, L. Xiao, Y. Jia, J. Ma, F. Wang, L. Wang, M. Wang, H. Huang, "Strong piezo-electrochemical effect of piezoelectric $BaTiO_3$ nanofibers for vibration-catalysis," J. Alloy. Compd., 762, 915-921 (2018). https://doi.org/10.1016/j.jallcom.2018.05.279
  16. S. Bairagi, S. W. Ali, "A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre," Eur. Polym. J., 116, 554-561 (2019). https://doi.org/10.1016/j.eurpolymj.2019.04.043
  17. J. H. Jung, M. Lee, J.-I. Hong, Y. Ding, C.-Y. Chen, L.-J. Chiu, Z. L. Wang, "Lead-Free $NaNbO_3$ Nanowires for a High Output Piezoelectric Nanogenerator" ACS Nano, 5, 10041-10046 (2011). https://doi.org/10.1021/nn2039033
  18. C. Beak, J. H. Yun, J. E. Wang, C. K. Jeong, K. J. Lee, K.-I. Park, D. K. Kim, "A flexible energy harvester based on a lead-free and piezoelectric BCTZ nanoparticle-polymer composite," Nanoscale, 8, 17632-17638 (2016). https://doi.org/10.1039/C6NR05784E
  19. Q. Chi, G. Liu, C. Zhang, Y. Cui, X. Wang, Q. Lei, "Microstructure and dielectric properties of BZTBCT/PVDF nanocomposites," Results. Phys., 8, 391-396(2018). https://doi.org/10.1016/j.rinp.2017.12.052
  20. J. S. Yun, C. K. Park, J. H. Cho, J.-H. Paik, Y. H. Jeong, J.-H. Nam, K.-R. Hwang, "The effect of PVP contents on the fiber morphology and piezoelectric characteristics of PZT nanofibers prepared by electrospinning," Mater. Lett., 137, 178-181(2014) https://doi.org/10.1016/j.matlet.2014.08.139
  21. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong, G. Tian, Y. Gao, H. Zhang, W. Yang, "Cowpea-structured PVDF/ZnO nanofibers based flexible self-powdered piezoelectric bending motion sensor towards remote control of gestures," Nano Energy, 55, 516-525(2019) https://doi.org/10.1016/j.nanoen.2018.10.049
  22. J. S. Yun, C. K. Park, Y. H. Jeong, J. H. Cho, J.-H. Paik, S. H. Yoon, K.-R. Hwang, "The Fabrication and Characterization of Piezoelectric PZT/PVDF Electrospun Nanofiber Composites," Nanomater. Nanotechno. 149. 127-133(2017).
  23. N. Nandini, M. Krishan, A.V. Suresh, H. N. N. Murthy, "Effect of MWCNTs on piezoelectric and ferroelectric properties of KNN composites," Mat. Sci. Eng. B, 231, 40-56(2018). https://doi.org/10.1016/j.mseb.2018.09.001
  24. S. H. Ji, J. H. Cho, Y. H. Jeong, J.-H. Paik, J. D. Yun, J. S. Yun, "Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications," Sensor. Actuat. A-Phys., 247, 316-322(2016). https://doi.org/10.1016/j.sna.2016.06.011
  25. S. H. Ji, J. S. Yun, "Fabrication and Characterization of Aligned Flexible Lead-Free Piezoelectric Nanofibers for Wearable Device Applications," Nanomaterials, 8,206-213(2018). https://doi.org/10.3390/nano8040206
  26. Q. Jing, S. Kar-Narayan, "Nanostructured polymerbased piezoelectric and triboelectric materials and devices for energy harvesting applications," J. Phys. D: Appl. Phys., 51 303001-303023(2018). https://doi.org/10.1088/0022-3727/51/30/303001
  27. C. R. Bowen, L. J. Nelson, R. Stevens, M. G. Cain, M. Stewart, "Optimisation of interdigitated electrodes for piezoelectric actuators and active fibre composites," J. Electroceram. 16, 263-269(2006). https://doi.org/10.1007/s10832-006-9862-8
  28. S. H. Ji, Y. S. Cho, Y. J. Yun, "Wearable core-shell piezoelectric nanofiber yarns for body movement energy harvesting," Nanomaterials, 9, 555-564(2019). https://doi.org/10.3390/nano9040555
  29. L. Gu, N. Cui, L. Cheng, Q. Xu, S. Bai, M. Yuan, W. Wu, J. Liu, Y. Zhao, F. Ma, Y. Qin, Z. L. Wang, "Flexible Fiber Nanogenerator with 209 V Output Voltage Directly Powers a Light-Emitting Diode," Nano Lett., 13, 91-94(2013). https://doi.org/10.1021/nl303539c
  30. C. K. Jeong, L. Lee, S. Han, J/ Ryu, G.-T. Hwang, D. Y. Park, J. H. Park, S. S. Lee, M. Byun, S. H. Ko, K. J. Lee, "A Hyper-Stretchable Elastic-Composite Energy Harvester," Adv. Mater. 27, 2866-2875(2015). https://doi.org/10.1002/adma.201500367